Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зацепления зубчатых колес конически Значения

В узле конической передачи, установленной в корпусе из легкого сп.лава (рис. 251, п), фиксирующий подшипник 1 расположен на значительном расстоянии Е от центра зацепления зубчатых колес. Удлинение корпуса при нагреве вызывает смещение малого колеса передачи в направлении, указанно.м стрелкой. Большое колесо перемещается в том же направлении, но на меньшую величину (вследствие меньшего значения коэффициента линейного расширения стального вала). В результате зазор  [c.378]


В узле конической передачи, установленной в корпусе из легкого сплава (рис. 270, а), фиксирующий подшипник 1 расположен на значительном расстоянии Ь от центра зацепления зубчатых колес. Удлинение корпуса при нагреве вызывает смещение малого колеса передачи в направлении, указанном стрелкой. Большое колесо перемещается в том же направлении, но на меньшую величину (вследствие меньшего значения коэффициента линейного расширения стального вала). В результате зазор в зацеплении уменьшается. При известных соотношениях зубчатые колеса могут начать работать враспор.  [c.359]

Часто зацепление зубчатых колес при сборке осуществляют одновременно с установкой по крайней мере одного из колес на вал либо с монтажом собранного с валом зубчатого колеса в корпус. Поэтому значения допустимых углов перекосов деталей У1н и у2н будут преимущественно ограничиваться в зависимости от того, возможен ли монтаж колес на валы или в корпус. Их значения для цилиндрических и конических посадочных ступеней, а также для шпоночных и шлицевых соединений деталей можно найти в таблицах или рассчитать по приведенным ранее формулам.  [c.280]

Модуль зубьев — основной параметр зубчатого колеса. Для пары колес, находящихся в зацеплении, модуль должен быть одинаковым. Модули зубьев для цилиндрических и конических передач регламентированы ГОСТ 9563—60. Значения стандартных модулей от 1 до 14 мм приведены в табл. 71.  [c.114]

Конические зубчатые колеса применяют в передачах, оси валов которых пересекаются гюд некоторым межосевым углом 1. Обычно 1 = 90. Конические колеса (см. рис. 9.1) бывают с прямыми ( ) и круговыми [е) зубьями. Ось кругового зуба — это дуга окружности соответствующего диаметра резцовой головки (рис. 9.28). Нарезание зубьев резцовой головкой обеспечивает высокую производительность и низкую стоимость колес. Угол наклона кругового зуба переменный. За расчетный принимают угол на окружности среднего диаметра колеса, обычно р = 35". Значение 3 выбирают исходя из обеспечения плавности зацепления. В сравнении с цилиндрическими конические передачи имеют большую массу и габариты, сложнее в изготовлении и монтаже.  [c.201]

Допуски на элементы зацепления конических зубчатых колёс. В конических колёсах шаг вдоль линии зацепления зависит как от точности профиля инструмента, так и, в отличие от цилиндрических колёс (не шлифуемых), от точности делительного механизма зуборезного (или зубошлифовального) станка. Кроме того, на разности шагов вдоль линии зацепления шестерни и колеса сказывается изменение осевого положения последних. Практически требующаяся точность шага вдоль линии зацепления для прямозубых конических колёс определяется значениями приведёнными в табл. 24. Допускаемая ошибка в окружном шаге и в профиле должна по указанным соображениям составлять лишь часть Мд. Отсюда следует, что необходимой точности этих элементов зацепления для среднескоростных и быстроходных прямозубых конических колёс достичь гораздо труднее, чем для соответствующих цилиндрических.  [c.335]


Небольшие отличия в описываемых этими стандартами исходных контурах показаны в табл. 6.1. Исходный контур является пр.чмо- бочным реечным контуром с равномерно чередующимися симметричными зубьями и впадинами трапециевидной формы. Указанные стандарты распространяются на эвольвентные цилиндрические зубчатые передачи о прямозубыми и косозубыми колесами, а также на конические передачи с прямозубыми зубчатыми колесами и устанавливают нормальный номинальный исходный контур зубчатых колес. Шаг зубьев выражается через основной параметр зубчатого зацепления — модуль т р кт. Модуль измеряется Б миллиметрах. Его значения регламентированы ГОСТ 9563—60 (СТ СЭВ 310—76), который устанавливает значения нормальных модулей для цилиндрических колес и внешних окружных делительных модулей для конических колес с прямыми зубьями. Значения модулей первого ряда стандарта 0,05 О.Об-  [c.280]

Практика показывает, какое огромное революционизирующее значение имеет инструмент для современного машиностроения. Теперь уже никто не пытается рассматривать инструмент как некий механический придаток к станку. Напротив, на ряде примеров можно показать, как усовершенствование инструмента, изобретение новых его видов неизменно влекут за собой новые конструкции станков. В качестве примера можно отметить развитие инструментов и станков для обработки зубчатых колес. Изобретение новых инструментов, как-то червячной фрезы, долбяка, гребенки, зубодолбежной головки, обкаточного резца, шевера, резцовой головки для кругового зацепления, фрезы-протяжки для конических прямозубых колес и других, послужило причиной появления целой серии специальных зуборезных станков. Следует также указать на огромное влияние, которое оказывают на конструкцию станков инструменты, выполненные из материалов с более высокими режущими свойствами (сначала быстрорежущая сталь, затем твердые сплавы и в настоящее время  [c.6]

На фиг. 10 показаны наружные и внутренние чистовые резцы для головок правого и левого направлений. Конструктивные размеры чистовых резцов даны в табл. 22. Профильный угол резцов характеризуется углом зацепления и номером резцов. Для конических зубчатых колес согласно ГОСТу 3058-54 стандартизован угол зацепления о = 20°. Номер резцов N определяет величину отклонения профильного угла резца от номинального значения угла зацепления это отклонение = 0 N (в минутах). Профильный угол наружного резца  [c.872]

Плоское производящее колесо — воображаемое зубчатое колесо 1 (фиг. 30), имеющее угол начального конуса, равный 90°. Плоское производящее колесо имеет такое же значение в зацеплении конических зубчатых колес, как зубчатая рейка в зацеплении цилиндрических колес.  [c.38]

Измерение суммарного пятна контакта. В ГОСТ 1643—81 размеры пятна контакта нормируются в процентах длины и высоты рабочей боковой поверхности зуба в собранной передаче. Допускается оценивать точность зубчатых колес по пятну контакта их зубьев с зубьями измерительного зубчатого колеса при этом относительные размеры суммарного пятна контакта должны быть соответственно увеличены по сравнению со значениями, указанными в стандарте для заданной степени точности по нормам контакта. Проверка осуществляется в собранной передаче либо на обкатном станке при зацеплении с измерительным колесом (см. табл. 13.2). Контрольно-обкатные станки применяются в основном для конических передач. Для этих передач эта проверка часто является основной однако иа большинстве станков возможно контролировать и цилиндрические передачи. Для обнаружения суммарного пятна контакта зубьев боковую поверхность меньшего или измерительного колеса покрывают слоем краски и после обката его с другим колесом при легком подтормаживании определяют степень прилегания сопрягаемых профильных поверхностей.  [c.179]

Так как передаточное отношение в эвольвентном сферическом зацеплении определяется отношением синусов углов при вершинах основных конусов, то оно не зависит от межосевого угла. Если из.ме-нить межосевой угол, дав ему новое значение, то изменятся углы при вершинах начальных конусов и угол зацепления иц/. Передаточное отношение при этом остается неизменным. Это свойство эвольвентного конического зацепления позволяет снизить требование к точности изготовления стойки в зубчатых механизмах с коническими колесами. Достоинством сферического эвольвентного зацепления, кроме указанного, является постоянное положение в пространстве плоскости зацепления.  [c.136]


Проверка жесткости вала. Во многих случаях достаточно прочные валы оказываются совершенно непригодными для работы вследствие большой деформации (большой стрелы прогиба, большого искривления оси или большого угла закручивания). На рис. 15.4, а штрих-пунктирными линиями показано, как изгибается вал с кон-сольно расположенным коническим колесом под действием окружного усилия Р. На рис. 15.4, б изображено положение червячного колеса и червяка, которое они займут в результате деформации валов под действием сил, возникающих в червячном зацеплении. Очевидно, в обоих этих случаях, чтобы правильность зацепления не была нарушена, нужно ограничить величину деформации валов. Чаще всего для валов зубчатых и червячных передач считают, что допустимый прогиб должен быть не больше 0,01—0,02 от значения модуля зацепления. Можно привести и другие примеры, когда деформация вала должна быть ограничена. Например, возникающая вследствие скручивания разница в углах поворота деталей, находящихся на противоположных концах вала, может привести к ошибке в функционировании всего устройства.  [c.380]

Как определяют межосевое расстояние в цилиндрической зубчатой передаче в конической передаче Что такое делительная окружность основная окружность окружность вершин зубьев окружность впадин Что такое шаг и модуль зубьев Как определяют диаметры делительных окружностей зацепляющихся колес в цилиндрической зубчатой паре Чем ограничено число зубьев меньшего колеса Как определяют межосевое расстояние цилиндрической зубчатой пары через модуль и числа зубьев колес Что такое линия зацепления полюс зацепления угол зацепления Каковы его значения для стандартных колес  [c.74]

Если при проверочном расчете зубьев на изгиб величина действительного напряжения на изгиб не превышает значения допускаемого напряжения на изгиб [а ] и величина максимального напряжения на изгиб а не превышает допускаемого предельного напряжения на изгиб [о ] пр, то это значит, что зубья будут прочными не только на контактную прочность, но к на изгиб. Если бы при проверке зубьев на изгиб потребовалась бы большая величина модуля зацепления, то для цилиндрической зубчатой,передачи необходимо уменьшить сумму зубьев колес г , а для конической передачи увеличить- модуль зацепления или для зубьев той и другой передачи взять более прочный материал.  [c.164]

Расчет модуля зацепления д.ля цилиндрических и конических зубчатых передач с прямыми и непрямыми зубьями выполняют по меньшему значению [а ]р из полученных для шестерни [а]р1 и колеса [су]р2, т. е. по менее прочным зубьям.  [c.52]

Рекомендации по выбору типа зацепления в зависимости от окружной скорости, твердости поверхности зубьев и точности изготовления передачи даны в табл. 111-90. В этой же таблице приведены примерные значения к. п. д. зубчатых пар (без учета к. п. д. подшипников). Для конических колес коэффициент 0 (см. табл. 111-88 и 111-89) имеет следующие значения 0<1 при отношении B/Di (Di,— средний диаметр начального конуса) 0=1 для прямозубых колес и 0=1,2 для косозубых.  [c.176]

Допуски распространяются на конические и гаповдные зубчатые передачи и пары (без корпуса) внешнего зацепления с прямыми, тангенциальными и криволинейными зубьями со средним делительным диаметром зубчатых колес до 4000 мм, средним нормальным модулем от 1 до 55 мм, с прямолинейным профилем исходного контура и номинальным углом его профиля 20° (для зубчатых колес гипоидных передач за номинальный угол профиля принимается среднее арифметическое значение углов профиля на противоположных сторонах зубьев).  [c.529]

ГДР. TGL15004 (1967) распространяется на цилиндрические и конические зубчатые колеса. Для цилиндрических косозубых и шевронных колес определяется нормальный модуль. Для конических колес модуль определяется по наибольшей длине образующей делительного конуса или как средний нормальный модуль на средней длине образующей делительного конуса. Стандарт содержит цж ряда модулей первые два ряда отличаются от СТ СЭВ 310—76 лишь отсутствием значений модулей 1,125 и 1,375 мм третий ряд содержит модули 0,16 и 0,65 мм, 17 значений модулей от 0,052 до 0,17 мм, предназначенных для циклоидального и дугового (часового) зацепления, модули 3,25 3,75 и 4,25 мм для автомобилестроения и модуль 6,5 мм для тракторостроения.  [c.126]

У конических передач со смещениями, как и у цилиндрических, аксои--ды в зацеплении пары колес (начальные конусы) не совпадают с аксоидами в станочном зацеплении (обычно Это делительные конусы). Для эвольвентных цилиндрических и конических передач такое несовпадение не имеет значения, однако для квазиэвольвентных передач оно ведет к несопряженности профилей зубьев. Поэтому в ГОСТ 19624—74 Передачи конические с прямыми зубьями. Расчет геометрии приведен только расчет передач без смещений и равносмещенных передач. В этом стандарте, как и в ГОСТ 19325—73, Передачи зубчатые конические. Термины, определения и обозначения есть упоминание о существовании положительных и отрицательных передач, но  [c.46]

Смазка зубчатых колес редукторов при окружных скоростях до г = = 12... 15 м/с осуществляется окунанием колес в масляную ванну. Такой способ смазки зубьев называется смазкой окунанием или картерной смазкой. Вместимость масляной ванны принимается из расчета 0,35...0,7 л на 1 кВт передаваемой мощности (меньшее значение — при меньшей вязкости масла, и наоборот). Масло должно покрывать рабочие поверхности зубьев, а потери передаваемой мощности на сопротивление масла вращению зубчатых колес и соответственно на нагрев масла должны быть минимальньпли. Так как во время работы редуктора происходят колебания уровня масла, то рекомендуется зубчатые колеса погружать в масляную ванну для цилиндрических передач на глубину не менее 0,75 высоты зубьев, а для конических передач вся длина нижнего зуба должна находиться в масле. Тихоходные зубчатые колеса второй и третьей ступеней редуктора при необходимости допускается погружать в масло на глубину до 7з радиуса делительной окружности. Чтобы избежать глубокого окунания колес в ванну, колеса первой ступени смазывают с помощью смазочной текстолитовой шестерни (рис. 12.33, а) или другого подобного устройства. Иногда для колес разных ступеней предусматривают раздельные ванны. В редукторах с быстроходными передачами применяют струйную или циркуляционную смазку под давлением. Масло, прокачиваемое насосом через фильтр, а при необходимости и охладитель, поступает к зубьям через трубопровод и сопла. При окружной скорости до V = 20 м/с для прямозубых передач и до и = 50 м для косозубых масло подается непофедственно в зону зацепления (рис. 12.33, б), а при более высоких скоростях во избежание гидравлических ударов масло подается на зубья шестерни и колеса отдельно на некотором расстоянии от зоны зацепления. Смазку подшипников редукторов при окружной скорости зубчатых передач V >  [c.214]


Геометрические расчеты исправленного зацепления прямозубых конических колес производят на тех же основаниях, что и эквивалентных цилиндрических зубчатых колес, образованных путем развертки дополнительных конусов на плоскость. Исправление можно выполнять как в виде неравносмещенного зацепления (угловая коррекция) при гс.э = 21э + 22э < 60, так и в виде равносмещенного зацепления (высотная коррекция) при 2с.э > 60. При малых значениях суммы 2с.э чисел 21э и 22э зубьев эквивалентных цилиндрических колес высотная коррекция не применяется.  [c.81]

Измерение отклонений шага. Под отклонением шага понимают кинематическую погрешность зубчатого колеса при его повороте на один номинальный угловой шаг. Обычно при измерении определяют разность действительного и среднего значения шага по окружности, проходящей в средней части по длине и высоте зуба с центром на рабочей оси вращения колеса. Для колес 9—12-й степени нормируется отклонение шага. Отклонения этого параметра колеса оказывают такое же влияние на работу, как погрешности шага зацепления цилиндрических зубчатых колес. Для конических колес невозможно нормировать погрешность шага зацепления, поскольку применяемое зацепление не является эвольвентным. При измерении отклонения шага на данном радиусе колеса нет необходимости знать действительное значение радиуса окружности, на котором осущест-  [c.341]

В двухступенчатых коническо-цилиндрических редукторах для обеспечения смазывания зубчатых зацеплений окунанием колес в масляную ванну рекомендуется выбирать значение 42 в пределах соотношения  [c.87]

При ремонте оборудования потребовалось заменить шестерню конической зубчатой передачи. Можно ли вместо шестерни с двадцатью зубьями поставить шестерню с восемнадцатью зубьями, не имея колеса передачи, если максимальный модуль зацепления у них одипа-корый, а изменение передаточного числа не имеет значения  [c.465]


Смотреть страницы где упоминается термин Зацепления зубчатых колес конически Значения : [c.131]   
Детали машин Том 3 (1969) -- [ c.192 , c.193 ]



ПОИСК



ЗАЦЕПЛЕНИЯ ЗУБЧАТЫХ КОЛЕС — ЗУБЧАТЫЕ КОЛЕСА КОНИЧЕСКИЕ

Зацепление зубчатое

Зацепление коническое

Зацепления зубчатых колес конически

Зубчатые зацепления—см. Зацепления

Зубчатые зацепления—см. Зацепления зубчатые

Зубчатые колеса конические Значения

Колеса зубчатые конические

Колеса конические



© 2025 Mash-xxl.info Реклама на сайте