Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия сульфидная

При -каталитических процессах вредные последствия сероводородной высокотемпературной коррозии проявляются (помимо разрушения металла) еще и в том, что продукт коррозии — сульфидная окалина — забивает проходы в катализаторе, создает вредный перепад давления газа и снижает активность катализатора.  [c.142]

Охрупчивание металла под воздействием агрессивных сред. Оно вызывается преимущественно сульфидной и межкристаллитной коррозией. Сульфидная коррозия связана с образованием легкоплавких сульфидов никеля N 8 (Гпл = 810 °С) при наличии в высокотемпературном газовом потоке сернистых соединений. Сульфиды имеют больший объем, что вызывает разрыхление металла и проникновение сульфидов на границы зерен, особенно сильное в восстановительных средах, где нет плотных оксидных защитных пленок. Чем крупнее зерно в металле шва и ЗТВ, чем больше сварочные напряжения и длительность высокотемпературного нагрева при сварке, тем ниже стойкость сварных соединений против сульфидной коррозии по отношению к основному металлу.  [c.85]


Использование таких защитных покрытий эффективно для защиты от коррозии и сульфидного растрескивания стальных деталей, работающих в различных условиях нагружения. Применительно к крепежным изделиям, потребности в которых по нефтяной и газовой промышленности составляют десятки тысяч тонн в год, использование ингибирован ных покрытий предотвращает также и окислительное схватывание.  [c.174]

Для защиты от коррозии и сульфидного растрескивания внутренней поверхности газопроводов, по которым транспортируется нефтяной газ, содержащий HjS, в настоящее время разработан и применяется способ ввода ингибитора и дополнительного его диспергирования по длине трубопровода при помощи конфузорных вставок.  [c.180]

В нефтяной и газовой промьшшенности большое значение имеет борьба с наводороживанием и сульфидным растрескиванием стали. В настоящее время наиболее распространенный метод борьбы, с этим видом коррозии — ингибиторная защита, Однако введение в состав газа и нефти ингибиторов и других химических веществ приводит к серьезным осложнениям при очистке и переработке нефти и газа. В этом  [c.190]

Коррозионно-механическое разрушение металлов происходит при одновременном воздействии коррозионной среды и механических напряжений. Основные виды коррозионно-механического разрушения металлов коррозионное растрескивание, коррозионная усталость, фреттинг-коррозия, коррозионная эрозия, кавитация, сульфидное растрескивание, водородное охрупчивание.  [c.14]

Вольфрам в такой же степени способен противостоять образованию дуговых разрядов, однако он подвержен эрозии и атмосферной коррозии с образованием оксидных и сульфидных пленок.  [c.253]

В последние годы одну из главных опасностей для работоспособности детален ГТУ представляет сульфидная коррозия, вызванная прежде всего конденсацией на поверхности деталей соединений серы, содержащихся почти во всех минеральных топливах либо попадающих в горячий тракт из внешней среды [3,11.  [c.177]

Более точные данные по влиянию на коррозионную стойкость алюминия, хрома и кобальта дал регрессионный анализ. В результате регрессионного анализа были установлены об.ласти сплавов, обладающих наиболее высокой стойкостью против сульфидной коррозии  [c.177]

В результате совместных коррозионных испытаний сплавов систем АМ—Со—Сг—А1—Y и Ni—Сг-А1—Y было установлено, что до 800 °С оба сплава имеют высокое сопротивление сульфидной коррозии. При 800—900 °С сплав с кобальтом характеризуется более высоким сопротивлением сульфидированию.  [c.178]


Исследована структура, фазовый состав, жаростойкость при температурах от 900 до 1200 С, сопротивление сульфидной коррозии в золе газотурбинного топлива при температурах от 600 до 900 С. Исследования проведены на литых сплавах для жаростойких конденсированных покрытий систем N1—Со—Сг—Л1—X, N1—Сг—А1—У в сравнении со сплавами типа Со—Сг—А1—У и Ве—Сг—А1—У.  [c.244]

Проявление косвенного цветного травления наблюдал Клемм, подробно не изучая закономерности изменения окраски. Интерференция в сульфидных пленках разной толщины происходит только тогда, когда достигается определенное химическое состояние сульфида в результате атмосферного воздействия. Косвенное цветное травление практически не применяется вследствие неизбежных длительных простоев. Кроме того, при увеличенной продолжительности выявления структуры следует считаться с коррозией, которая оказывает нежелательное действие на картину  [c.57]

В зависимости от состояния материала продолжительность травления в спиртовом растворе составляет несколько минут, в водном растворе 5—60 с. Как только полированная поверхность шлифа станет матовой (окончание травления), ее промывают сначала в воде, а затем в спирте и высушивают. Травитель пригоден только для незакаленных или неполностью закаленных эвтек-тоидных или заэвтектоидных сталей. Присутствие свободного феррита вызывает точечную коррозию. Травитель образует поверхностную сульфидную пленку, как при травлении тиосульфатом натрия. По своему строению она подобна окисной пленке, образующейся при термическом травлении. Травитель применяют в тех случаях, когда необходимо одновременно выявить аустенит  [c.85]

Разрушение труб может происходить за счет как сульфидной, так и сульфатной коррозии. Необходимым условием протекания сульфатной коррозии является наличие в топочной среде сернистого ангидрида 50з, причем для развития этого процесса достаточно присутствия 50з в количестве примерно 0,01%.  [c.235]

Изучение катодной поляризация стали в бактериальной среде, восстанавливающей сульфаты, показало, что могут существовать два механизма деполяризации. В дополнение к использованию поляризационного водорода бактериальной системой гидрогеназы имеется доказательство деполяризации катода твердым сульфидом железа. По данным некоторых исследований, сульфидный механизм является основным в бактериальной коррозии стали.  [c.26]

Бактериальная коррозия по своей природе представляет собой биоэлектрический процесс и по характеру протекания является значительно сложней, чем химическая и электрохимическая коррозия. Так, например, микроорганизмы, воздействуя на железо, наряду с другими соединениями образуют сульфид железа. Поверхность металла, покрытая сульфидной пленкой, начинает функционировать как катод. В результате площадь анодных участков сокращается, происходит интенсивное локальное разрушение металла [48, 49].  [c.15]

Кремний также повышает устойчивость сталей и сплавов к сульфидной коррозии.  [c.87]

Вторым основным коррозионно-активным агентом золы мазутов является сульфат натрия. Его воздействие на металлы, как указывалось выше, приводит к ускоренной коррозии с образованием на поверхности металла слоя оксидов и сульфидов, вследствие чего коррозия этого вида получила название сульфидно-оксидной [81. Скорость сульфидно-оксидной коррозии существенно возрастает при повышении концентрации SO3. Имеются экспериментальные подтверждения того, что в смеси оксида ванадия(У) и сульфата натрия скорость коррозии значительно больше, чем в каждом из этих соединений в отдельности. Часто об агрессивности нефтяного топлива и его золовых отложений судят по отношению содержания в них ванадия и натрия. Опыты показали рост скорости коррозии сталей и никелевых сплавов в широком интервале увеличения отношения V/Na. Коррозионное воздействие среды достигает максимума при V/Na = 13/1, что отвечает  [c.228]

Ванадиевой коррозии в меньшей мере подвержены стали и сплавы, легированные алюминием, а сульфидно-оксидной — легированные хромом. Не совпадают и пики на температурных зависимостях коррозии одного и того же металла обычно максимум скорости ванадиевой коррозии наблюдается при меньшей температуре, чем для сульфидно-оксидной коррозии. Влияние температуры металла и температуры газов на скорость коррозии в продуктах сгорания жидкого топлива, содержаш,его ванадий, серу и натрий, такое же, как в продуктах сгорания углей.  [c.229]


Необходимо отметить, что ванадиевая коррозия происходит, как правило, не в чистом виде, а обычно в сочетании с сульфидно-оксидной. В последние годы в связи с более высокой степенью очистки топлива от ванадия главную роль в коррозионном повреждении металлических деталей в продуктах сгорания жидкого топлива играет сульфидно-оксидная коррозия. Кроме того, даже при наличии ванадия в топливе и его влиянии на коррозию, в настоящее время считается, что во всех случаях основное воздействие на металл оказывает сульфидно-оксидная коррозия, а роль соединений ванадия — вспомогательная [9].  [c.229]

Вклад химсостава и структуры в образование макродефекгности особенно весом для таких опасных явлений, как коррозийное растрескивание под напряжением, стресс-коррозия, сульфидное растрескивание и т.д.  [c.183]

Вопросам биокоррозии уделяется в последние годы достаточно много внимания. Обнаружено, что, по крайней мере, в 70 % случаев процессы локальной внешней и внутренней коррозии связаны с активностью микроорганизмов среды - грунта, обводненной нефти, пластовых вод, рудных и минеральных отложений. донных осадков [3, 4, 5]. Тем не менее, до сих пор в отечественной практике защиты от коррозии не признана в должной мере роль микроорганизмов в развитии агрессивности среды. Наиболее опасные виды локальных коррозионных поражений при транспорте нефти и газа - стресс-коррозия, сульфидное растрескивание, локальная подпленочная, ручейковая коррозия и т.д., являются видами коррозии, протекающими с участием микроорганизмов (Mi robial Indu ed orrosion - MI в зарубежной литературе).  [c.6]

Данные, полученные Грэделом и др. [2] на стенде для испытаний на атмосферную коррозию [21], свидетельствуют, что скорость коррозии при воздействии OS и H S одинакова. Скорость образования сульфидной пленки в присутствии OS и влаги линейно зависит от полной выдержки , которая является произведением времени выдержки образца и средней концентрации OS.  [c.177]

В растворе, насыщенном H S и содержащем 5 % Na l и 0,1 % уксусной кислоты (имитация кислой среды газовых скважин), разрушение сплава зависит от температуры и скорости равномерной коррозии, которая преобладает в этих условиях и приводит к образованию водорода. При комнатной температуре разрушение вследствие водородного растрескивания (называемого иногда также сульфидным растрескиванием) протекает обычно только в том случае, если обработанные холодным способом сплавы были подвергнуты последующей термической обработке (состарены на заводе-изготовителе). Старение сплавов, увеличивающее их прочность, может приводить также к усилению равномерной коррозии в кислотах. При этом количество выделяющегося водорода становится достаточным, чтобы вызвать растрескивание. При повышенной температуре разрушения этого типа обычно уменьшаются (меньше водорода проникает в металл и больше удаляется в виде газа). Однако в области повышенных температур водородное растрескивание может смениться КРН, которое связано с присутствием хлоридов. В этом случае контакт сплавов с более активными металлами предотвращает растрескивание (протекторная защита).  [c.371]

Кетосульфиды общей формулы К,СОК28Кз, получаемые на основе сульфидно-щелочных стоков нефтехимических производств, имеют два активных центра адсорбции — атомы серы и кислорода, что определяет актуальность исследования возможности их применения в качестве сырья для производства ингибиторов коррозии под напряжением.  [c.266]

Состав и структура стали оказьтают на стойкость к СВУ гораздо большее влияние, чем на общую коррозию. Существенно влияет на сульфидное растрескивание углерод. С увеличением количества углерода склонность закаленных сталей к сульфидному растрескиванию растет вследствие увеличения внутренних напряжений, прочности стали. Малое количество водорода, проникающего в металл, не может вызвать достаточных для развития трещин локальных пластических деформаций в прочном материале. Считается, что сталь теряет пластичность при окклюзии водорода 7-12 см на 100 г металла. Однако водородное охрупчивание может происходить даже при незначительном количестве поглощенного водорода. Так, для стали марки 4340 (предел прочности 1600 МПа) химический состав следующий.  [c.36]

Восстановленные атомы водорода частично рекомбинируют, а частично диффундируют в металл, вызывая водородную хрупкость. Сульфиды железа, образующиеся в результате коррозии железа в сероводородсодержащих средах, имеют различное строение в зависимости от условий их образования и оказывают различное влияние на скорость коррозии. Так, при низких концентрациях сероводорода (до 2 мг/л) сульфидная пленка состоит главным образом из трои-лита FeS и пирита FeSj с размерами кристаллов до 20 нм, образующих довольно плотную пленку и оказывающих некоторое защитное действие от коррозии. При концентрациях сероводорода от 2 до 20 мг/л дополнительно появляется небольшое количество кансита FegSj. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит, размеры кристаллов увеличиваются до 75 нм, кристаллическая решетка несовершенна, не препятствует диффузии сероводорода и поэтому не обладает защитными свойствами.  [c.21]

Максимальная склонность к сульфидному растрескиванию наблюдается в слабокислой и кислой областях, т. е. при pH электролита, вызывающих наиболее интенсивное наводороживание металла (рис, 18). Склонность стали к сульфидному растрескиванию в растворах сероводорода зависит не только от величины pH, но и от того, с помощью каких добавок достигалось заданное pH. Так, при уменьшении pH раствора при добавлении уксусной кислоты склонность стали к растрескиванию больше, чем соляной кислоты. Это объясняется тем, что при добавке уксусной кислоты pH раствора в процессе коррозии меняется меньше, чем при введении соляной кислоты, а ионы ацетата стимулируют наводороживание, в то время как ионы хлора его замедляют. Не вызывают наводорожн-вание и растрескивание стали сухой сероводород, а также его растворы в слабо-диссоциирующих растворителях, например в бензоле и т, п.  [c.22]


Электролитические осадки платины характеризуются высокой стойкостью к коррозии и истиранию, на их поверхности не образуются окисные и сульфидные пленки, поэтому платиновые покрытия могут применяться во многих отраслях промышленности. Платина значительно меньше применяется в промышленности, чем палладий и родий, так как она очень дефицитна и имеет высокую стоимость. На платиновой основе могут быть получены различные электролитические сплавы, обладающие бoлыJJoй стойкостью к износу, эрозии и коррозии, такие, как платина — родий, платина — палладий.  [c.66]

На рис. 2.4 приведена экспериментально установленная зависимость интенсивности коррозии низко- и высоколегированных сталей Т22 (25 % Сг, 1 % Мо) и ТР321 (18 % Сг, 8 % Ni) в смеси из сульфатов калия, натрия и оксида железа при молярном соотношении 1,5 1,5 1,0 в потоке газа с содержанием 3,6% кислорода и 0,25 % диоксида серы в интервале температур от 510 до 820 °С [69]. Выбранный температурный интервал соответствует образованию комплексных сульфатов калия и натрия. В интервале температур от 510 до 715°С интенсивность коррозии под действием сульфатов выше, чем в чистой газовой среде. Низколегированная сталь корродирует интенсивнее высоколегированной, но относительное влияние комплексных сульфатов на высоколегированную сталь больше из-за ее большей коррозионной стойкости в чистой газовой среде. Последующий анализ корродированной поверхности показал существование на ней сульфидной серы и магнетита..  [c.69]

На рис. 4.37 на параметрической диаграмме коррозионной стойкости приведены экспериментальные точки глубины коррозии труб из хромомарганцевых аустенитных сталей, а также стали 12Х18Н12Т. Видно, что коррозионная стойкость всех исследованных хромомарганцевых аустенитных сталей равна и практически не отличается от коррозионной стойкости хромопикелевой аустенитной стали 12Х18Н12Т. Такой результат, по-видимому объясняется тем, что температуры металла, при которых были проведены экспериментальные исследования (до 550 С), являются слишком низкими для воздействия сульфатного механизма коррозии с образованием сульфидных эвтектических смесей с низкой температурой плавления. При существовании сульфатного механизма коррозии можно полагать, что преимущество хромомарганцевых аустенитных сталей в существенной степени должно проявляться при более высоких температурах металла. Следовательно, до температуры металла 550 °С хромомарганцевые аустенитные стали по коррозионной стойкости не имеют явных преимуществ по сравнению с хромоникелевой аустенитной сталью 12Х18Н12Т.  [c.184]

Установлено положительное влияние хрома па коррозионную стойкость п кобальта, хрома, иттрия на жаростойкость сплавов. При 850 С и выше сопротивление сульфидной коррозии сплавов систем N1—Со—Сг—А1—У и Со—Сг—А1—У незначительно выпю, чем сплавов типаК —Сг—А1—У. Сопротивление сульфидной коррозии сплавов системы Ве—Сг—А1—У в 6 раз выше, чем сплавов N1—Сг—А1—У.  [c.244]

За исключением сульфидного потемнения на серебре и меди, присутствие влаги на металлической поверхности является обязательным условием коррозии. Влага может появиться в виде тонкой конденсированной пленки вследствие колебаний температуры. Во время сильного дождя поверхность металла будет полностью залита водой. Атмосферная загрязненность промышленными отходами может значительно ускорить действие коррозии. Это особенно относится к газам (таким, как SO2 и H2S) и твердым частицам (таким, как углерод, NH4 I и (NH4)2S04). Насыщенность воздуха частицами соли в прибрежных районах также оказывает существенное влияние на скорость коррозии.  [c.11]

Коррозия в газовой среде при высоких температурах. Коррозионное разрушение поверхностного слоя металлов и сплавов при эксплуатации машин и оборудования при высоких температурах в газовых средах наносит большой ущерб. Потери металла неизбежны как при холодной пластической обработке, так и при термической обработке. Газовая коррозия поражаег не только поверхность металла, но может проникнуть и вглубь (например, обезуглероживание, сульфидная и водородная коррозия).  [c.82]

Особенность сульфидной коррозии состоит в том, что разрушаются границы зерен. Вначале коррозия термоустойчивых сплавов, вызванная содержащими серу газами, часто носнт местный характер, т. е. разрушаются отдельные зерна металла. Однако после этого газовая коррозия быстро проникает в глубь металла.  [c.87]

Сульфидная коррозия в дымовых газах наблюдается при концентрациях сероводорода 0,01—0,2 %. Зондирование топочного пространства показало, что в неблагоприятных случаях вблизи поверхности экранов пылеугольных котлов содержание кислорода снижается с 2,0 до 0,2 %, а содержание оксида углерода и сероводорода увеличивается с 2,6 до 8,2 и с 0,013 до 0,066 % соответственно [21. При этом наблюдалось увеличение скорости коррозии труб из стали 12Х1МФ с нескольких десятых до 5—6 мм/год. В результате коррозии происходит существенное утонение стенки труб с огневой стороны, что приводит к их разрыву (из-за соответствующего роста напряжений) через 23—24 тыс. ч эксплуатации. Сероводородная коррозия сопровождается образованием на поверхности труб из перлитных сталей двухслойной пленки, наружная часть которой состоит из оксида железа FejOg, а внутренняя — из сульфида железа FeS. Влияние сероводорода увеличивается при повышении температуры до 550 °С, а затем уменьшается из-за его разложения (рис. 12.2). Скорость сероводородной коррозии возрастает линейно с увеличением концентрации сероводорода в дымовых газах (рис. 12.3). Экспериментально обнаружен линейный рост концентрации сероводорода в топочных газах при увеличении соотношения СО (СО + СО ). Отрицательное воздействие сероводорода проявляется не только в усилении коррозии металлических поверхностей, но и в постепенном разрушении защищающего их огнеупорного (в частности, хромитового) слоя, который наносится на экран нижней радиационной части (НРЧ) котлов.  [c.222]

Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д.  [c.4]


Загрязненная морская вода часто содержит сероводород или другие сульфиды. Пленка сульфида меди, образующаяся на поверхности металла в морской воде, содержащей такие загрязнения, является более катодной, чем коррозионная пленка, сформированная в чистой воде. Из-за большой площади поверхности активного катода в местах разрыва сульфидной пленки может происходить быстрая -локальная коррозия. Некоторые сплавы, например купроникель или Си—А1, менее склонны к образованию сульфидной пленки и обладают большей стойкостью в загрязненной морской воде, чем медь и обычная латунь (табл. 37).  [c.98]

Кроме того, введение в сталь стабилизаторов глерода титана или ниобия, неизбежно приводит к образованию, помимо карбидов, нитридных, оксидных и,сульфидных вклдочений. Наличие подобных включений в целом увеличивает склонность к общей и точечной коррозии, снижает герметичность материала, ограничивает возможности получения высокого класса отделки поаерх-ности.  [c.125]


Смотреть страницы где упоминается термин Коррозия сульфидная : [c.263]    [c.13]    [c.9]    [c.130]    [c.177]    [c.179]    [c.222]    [c.239]    [c.444]    [c.65]    [c.352]   
Защита от коррозии на стадии проектирования (1980) -- [ c.39 ]



ПОИСК



Сульфидно-оксидная газовая коррозия



© 2025 Mash-xxl.info Реклама на сайте