Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющая активное состояние

Для анодной защиты, в отличие от катодной, характерно, 4to скорость коррозии, хоть и мала, однако не падает до нуля. С другой стороны, в агрессивных кислотах необходима значительно более низкая плотность тока, чем при катодной защите, когда она не может быть ниже эквивалентной скорости саморастворения в той же среде. Для нержавеющих сталей защитная плотность тока отвечает довольно высокой скорости коррозии сплавов в активном состоянии.  [c.230]


Условия пассивации видны на анодных поляризационных кривых сталей (рис. 100). Если повышать электродный потенциал нержавеющей стали в растворе серной кислоты, то плотность тока увеличивается до максимума, причем металл находится в активном состоянии (3) и растворяется, а плотность тока характеризует скорость растворения. При определенном потенциале пассивации (4) плотность коррозионного тока начинает резко понижаться металлическая поверхность пассивируется (2). Пассивацию связывают с образованием тончайшей защитной пленки, которая состоит в основном из оксида и гидроксида хрома. Если потенциал продолжать увеличивать до очень высоких значений, плотность тока снова возрастает вследствие так называемой транспассивной коррозии (1) .  [c.109]

Нарушение сплошности пассивной пленки на неметаллических включениях при воздействии ионов галогенидов является причиной язвенной и питтинговой коррозии. Язвенная коррозия характерна для нержавеющих сталей, алюминиевых сплавов, медных сплавов при высоких скоростях движения воды. Сохранению активного состояния дна язвы способствуют гидролиз продуктов коррозии, высокая плотность анодного тока гальванической пары.  [c.34]

Если коррозионный процесс на основной поверхности изделия протекает с кислородной деполяризацией, то вследствие диффузионных затруднений доставки кислорода в места щелей и зазоров раствор в них будет обеднен кислородом. Это особенно важно для случая коррозии оборудования, находящегося в пассивном состоянии, например, для коррозии оборудования химической промышленности, изготовленного из нержавеющих сталей. Снижение скорости катодной реакции вследствие уменьшения концентрации кислорода в растворе может привести к переводу металла в активное состояние, то есть к резкому (на несколько порядков величины) возрастанию скорости его растворения.  [c.130]

Имеются работы [410], в которых явление пассивности объясняется теорией электронных конфигураций. В этом случае пассивное состояние нержавеющих сталей связано с существованием незаполненных электронами оболочек. Когда металл находится в активном состоянии, эти оболочки заполнены электронами.  [c.490]


Хлор-ион не проявляет особых специфических свойств по отношению к железу, однако, сильно активирует поверхность нержавеющих сталей. Если в сульфате небольшими плотностями тока можно заполяризовать нержавеющую сталь до потенциала разряда ионов гидроксила, то в присутствии хлор-ионов этого сделать не удается. По достижении электродом потенциала sd 0,6 в поверхность нержавеющей стали активируется, и сталь переходит в активное состояние.  [c.68]

В активном состоянии зависит от состава стали, концентрации кислоты и перемешивания раствора. Коррозионная стойкость исследованных нержавеющих сталей, находящихся в активном состоянии в растворах азотной кислоты (при катодной поляризации), увеличивается с повышением содержания хрома в сплаве, понижением содержания никеля, понижением концентрации кислоты и в отсутствие перемешивания.  [c.70]

Таким образом, в растворах азотной кислоты при катодной поляризации нержавеющие стали могут переходить в активное состояние и растворяться с высокими скоростями. Однако более сильная катодная поляризация (до более отрицательных потенциалов) может снижать скорость коррозии нержавеющих сталей в этих условиях за счет эффекта катодной электрохимической защиты. Результаты этих опытов указывают на необходимость при эксплуатации нержавеющих сталей учитывать возможность нарушения их пассивного состояния в области относительно отрицательных значений потенциалов.  [c.70]

С увеличением окислительной способности среды пассивация облегчается, однако в некоторых случаях наступает явление пере-пассивации — переход пассивированного металла в активное состояние. Так, скорость коррозии нержавеющих сталей в растворах азотной кислоты при концентрациях г>80—90% резко возрастает.  [c.367]

Особо следует остановиться на поведении пассивных металлов и соотношении поверхностей контактирующих металлов. Сплавы, подобно нержавеющим сталям, которые в морской воде могут находиться как в активном, так и в пассивном состоянии, оказывают различное влияние. Будучи в пассивном состоянии, они усиливают коррозию менее благородных металлов, таких как алюминий, сталь и медные сплавы. Если же они находятся в активном состоянии, то претерпевают сами сильную коррозию при контакте с материалами, обладающими более положительным, чем они сами в активном состоянии, потенциалом (медные сплавы, титан, хастеллой и т. д.). В связи с этим наблюдается часто при развитии питтинговой коррозии сильная коррозия нержавеющих сталей при контакте их с более благородными металлами. При контакте нержавеющих сталей с такими неблагородными металлами, как малоуглеродистая сталь, цинк, алюминий, потенциал которых отрицательнее потенциала нержавеющих сталей в активном состоянии, последние электрохимически защищаются. Аналогичным образом можно добиться защиты от общей и точечной коррозии и менее легированных сталей. В частности, сообщается, что крыльчатки из хромистой стали Х13 обнаруживают высокую стойкость в насосах с чугунными корпусами при перекачке морской воды.  [c.171]

Из данных, полученных автором, следует, что обычные нержавеющие стали типа 18-8 могут быть при катодной поляризации переведены в активное состояние при любой концентрации азотной кислоты, вплоть до 50%. С увеличением концентрации кислоты сталь начинает активироваться при более положительном потенциале и электрохимическая защита наступает при менее благородном потенциале. В более концентрированных растворах азотной кислоты сталь при комнатной температуре не активировалась. С повышением температуры потенциал активирования нержавеющих сталей смещается к более положительным значениям, т. е. нарушение пассивного состояния облегчается. Анодная поляризуемость из активного состояния уменьшается.  [c.188]


Изучение стационарных потенциалов ряда металлов в щелях [24, 25] показало, что это на самом деле происходит (рис. 88). Потенциал в щели может при этом сместиться в отрицательную сторону на относительно большую величину. Особенно сильно меняются потенциалы нержавеющих сталей так например, для сталей Х13 и Х17 потенциал металла в щели сдвигается в область отрицательных значений на 0,55—0,60 в по сравнению с потенциалом металла на открытой поверхности. Объясняется это тем, что вследствие недостаточного доступа кислорода нержавеющая сталь переходит из пассивного состояния в активное. Потенциал железа, который мало зависит от концентрации кислорода как на открытой поверхности, так и в щели, имеет значение, характерное для активного состояния.  [c.216]

Если проанализировать кривые трех хромистых сталей (кривые /, 3, 5), содержащих различное количество хрома, то легко видеть, что анодное растворение затрудняется с увеличением содержания хрома в сплаве. Так, например, кривая 5 сдвинута примерно на 0,5 в в положительную сторону по отношению к кривой 1. Отсюда можно заключить, что увеличение содержания хрома в сплаве повышает сопротивление хромистых сталей активирующему действию хлорид-ионов. При исследовании анодного поведения основных компонентов нержавеющих сталей — железа, молибдена, никеля и хрома —в растворе хлористого натрия было обнаружено, что легче всего пассивируется хром (рис. 145). Железо в этих условиях находится в активном состоянии. Скорости анодного растворения никеля и молибдена почти одинаковы. Эти метал-300  [c.300]

При достаточных количествах сульфата нержавеющая сталь ведет себя как пассивный электрод и ее можно заполяризовать до относительно высоких значений потенциала без того, чтобы она перешла в активное состояние.  [c.306]

Здравый смысл требует при возможно полном использовании знаний в области коррозии сочетать их с чувством перспективы. Здесь имеются свои подводные камни. Следует избегать при проектировании застойных зон и щелей, в которых недостаток кислорода может вызвать возникновение весьма активно корродирующих участков. В местах, где может собираться вода, следует предусматривать дрена ые отверстия. Необходимо избегать контактов различных металлов. В воде, содержащей растворенный кислород, стальные листы, соединенные медными заклепками, будут работоспособными, однако медные листы на стальных заклепках быстро развалятся, так как в последнем случае образуются очень большие эффективные катоды. При сопряжении двух нержавеющих сталей различного состава с существенно различными потенциалами могут возникнуть контактные коррозионные токи заметной величины. Для одних нержавеющих сталей возможно пассивное, а для других — активное состояние в одной и той же среде.  [c.165]

Пассивное состояние нержавеющей стали обычно соответствует установлению электродного потенциала данного металла в условиях быстрого движения аэрируемой морской воды активное состояние металла — в слабо аэрируемой, застойной зоне морской воды.  [c.78]

Теория дифференциальных анодных кривых позволяет также дать объяснения явлениям межкристаллитной коррозии сталей и сплавов, наблюдаемым в некоторых растворах при анодной поляризации. В зависимости от природы раствора можно задать такой анодный потенциал потенциостатическим методом, при котором границы зерен будут в активном состоянии, а тело зерна — в пассивном состоянии. На этом принципе основаны некоторые методы ускоренных испытаний на межкристаллитную коррозию сталей и сплавов путем анодной поляризации, например, нержавеющих сталей в 10%-ной щавелевой кислоте, в 65%-ной фосфорной кислоте и др.  [c.59]

Явление щелевой коррозии наиболее характерно для конструкций, имеющих труднодоступные участки в виде щелей, зазоров, карманов. При этом основная часть конструкции может сохранять пассивное состояние, в то время как в щелях и зазорах вследствие затруднений диффузии окислителя или анодного замедлителя возникает активное состояние, например, у нержавеющих сталей Это явление может быть также объяснено с помощью дифференциальных анодных и катодных кривых.  [c.68]

Если стационарный потенциал нержавеющей стали находится между ф1 и ф2, то границы зерен поляризуются катодно, а тело зерна находится в активном состоянии и корродирует.  [c.248]

На основе электрохимических исследований были сформулированы обшие принципы подбора растворов для ускоренных испытаний нержавеющих сталей на склонность к межкристаллитной коррозии, которые сводятся к следующему основа раствора (его состав, концентрация и температура), определяющая анодную поляризацию стали, должна обеспечить определенную область потенциалов, при которой сердцевина зерна находится в пассивном, а границы — в активном состоянии, причем скорость коррозии границ в этой области потенциалов высока. Эта область потенциалов легко определяется сравнением анодных поляризационных кривых для сталей в состоянии склонности к межкристаллитной коррозии и в состоянии стойкости против нее.  [c.252]

Свойства того или иного сплава, а также активирующее влияние среды особенно четко выявляются при анодной поляризации. Это хорошо иллюстрируется кривыми анодной поляризации нержавеющих сталей различного состава, представленными на рис. 175. Для всех сталей выявляется характерная особенность, заключающаяся в том, что устойчивая поляризация наблюдается лишь до определенных значений потенциалов, по достижении которых сплав переходит в активное состояние. Значение потенциала, при котором сплав активируется в отдельных участках, не одинаково для различных сплавов. Этот потенциал может быть назван потенциалом активирования и характеризует сопротивление сплава активирующему влиянию хлор-ионов. Чем положительнее потенциал активирования, тем более устойчиво пассивное состояние данного сплава в растворах хлоридов.  [c.299]


Высокая концентрация ионов С1 и низкое значение pH поддерживает питтинг в активном состоянии. В то же время высокая плотность растворов, содержащих продукты коррозии, обусловливает их вытекание из питтинга под действием силы тяжести. При контакте этих продуктов с поверхностью сплава пассивность в этих местах нарушается. Это явление объясняет часто наблюдаемую на практике форму питтинга, удлиненную в направлении действия силы тяжести (течения продуктов коррозии). На пластинке нержавеющей стали 18-8 после выдержки в морской воде в течение 1 года была обнаружена узкая бороздка, протянувшаяся на 6,35 см от начальной точки (рис. 18, 5, а). Возникновение коррозионных разрушений такого типа было воспроизведено в лабораторных условиях [43]. По поверхности образца стали 18-8, полностью погруженного в раствор Fe la и немного отклоненного от вертикали, постоянно пропускали слабую струю концентрированного раствора Fe lj. Через несколько часов под струей раствора Fe Ia образовывалась глубокая канавка (рис. 18.5, Ь). На поверхности железа подобная канавка не образуется, так как на нем не возникает активно-пассивный элемент.  [c.313]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]

Катодные металлы. На практике благородные металлы ведут себя в соответствии со своим положением в ряду ЭДС. Однако, как видно из ряда активностей, коррозионный потенциал меди — благородного металла ( сц2 +/си = 0,34 В) в морской воде более отрицателен, чем у высоконикелевых сплавов (например, хастелоя) и нержавеющих сталей при условии, что эти сплавы находятся в пассивном состоянии. В то же время потенциал нержавеющей стали в активном состоянии подобен потенциалу низколегированной стали. Это означает, что нержавеющая сталь, содержащая 18% Сг и 8 /о Ni, в пассивном состоянии вызывает коррозию меди и медных сплавов, а в активном состоянии может сама подвергаться коррозии.  [c.39]

Скорость анодного процесса у стали 1Х18Н9Т в средах с низким pH зависит от того, какой кислотой подкисляется раствор. Так, до pH 1 в растворах серной и азотной кислот величина области пассивации остается.такой же, как и в дистиллированной воде. При подкислении раствора соляной кислотой величина области пассивации уменьшается тем в большей степени, чем ниже pH раствора, т. е. чем больше концентрация ионов хлора. В этом случае до pH П скорость анодного процесса, в частности величина потенциала пробоя, определяется концентрацией не ионов водорода, а ионов хлора. Если в нейтральных деаэрированных средах на анодных поляризационных кривых стали 1Х18Н9Т отсутствует область активного растворения, то в средах с более низким pH сталь при тех же значениях потенциалов начинает растворяться в активном состоянии. В соответствии с изложенным в растворах азотной кислоты с pH 2-3 скорость коррозии стали 1Х18Н9Т практически не отличается от скорости ее в дистиллированной воде. С дальнейшим уменьшением pH скорость коррозии возрастает (см. табл. 111-11). Это объясняется тем, что с увеличением скорости катодного процесса разряда ионов водорода потенциал стали смещается в положительную сторону, что в соответствии с ходом анодной поляризационной кривой (см. рис. 111-13 и 111-14, кривая 4 приводит к увеличению скорости коррозионного процесса. На линейное увеличение скорости коррозии аустенитной нержавеющей стали 18-8 с ростом  [c.127]

Коррозионная стойкость нержавеющих сталей основана на пассивности их поверхности. До тех пор пока на поверхности металла сохраняется пассивная пленка (как это наблюдается в окислительной среде), аустенитные стали почти столь же стойки к коррозии, как и платина. В случае появления повреждений пленки, вызванных ионами высокой проницаемости (например, галлоидами) возникает интенсивная язвенная коррозия. При полном же удалении или растворении пассивной пленки потенциал аустенитной стали близок к потенциалу железа металл находится в активном состоянии, вследствие чего и протекает общая равномерная коррозия металла.  [c.352]

Такие металлы, как алюминий, олово, медь и серебро, поляризуются сильно лишь до определенного потенциала По достижении электродом этого потенциала поверхность активируется и растворение начинает идти без заметной поляризации. Значительное торможение анодной реакции ионизации металла наблюдается на никеле, золоте, платине и нержавеющих сталях. Эти металлы можно заполяризовать до относительно больших полб жительных потенцилов без того, чтобы они перешли в активное состояние.  [c.65]

Для того чтобы обеспечить более быстрый переход защищаемых образцов в пассивное состояние, нержавеющую сталь в данных опытах (см. рис. 73 и табл. 16) погружали в раствор под током К,г м 250 мка см , а через 15 мин. ток снижали до 2,5 мш1см , и в дальнейшем его таким поддерживали в течение всего опыта. Поэтому небольшая коррозия стали, наблюдаемая при защите анодным током, относится главным образом к начальному времени и определяется растворением стали из активного состояния при включении первоначального сравнительно большого анодного тока. Можно предполагать, что устойчивая скорость коррозии стали при более длительном времени испытания с применением анодной защиты будет еще ниже, чем указано в табл. 16.  [c.111]

Коэффициент Ь" оказывается обычно равным 0,050—0,100. Иногда анодная поляризация вовсе отсутствует. На это, в частности, указывают результаты, полученные Миролюбовым [12] при изучении реакции анодного растворения нержавеющих сталей, находившихся в активном состоянии в азотной кислоте (табл. 7).  [c.28]

Нержавеющие стали Х13 и XI7 (активное состояние). . . Никельмедистый чугун (12—  [c.151]


Хорошим подтверждением электрохимической субмикронеоднородности поверхности сплавов может служить экспериментально наблюдаемое изменение соотношения концентраций компонентов в поверхностных слоях подобных сплавов в начальных стадиях коррозии, т. е. при протекании компонентно избирательной коррозии. Например, установлено, что в сплавах на основе титана или в нержавеющих сталях наблюдается обогащение поверхности введенными в сплав более термодинамически стабильными катодными добавками (Pd, Pt) [20, 42, 43]. В. В. Скорчелет-ти и его сотрудниками в сплавах Си—Ni в активном состоянии было зарегистрировано обогащение поверхности медью [41, с. 165]. При коррозии нержавеющих сталей, в зависимости от условий, авторами совместно с Л. Н. Волковым, установлена возможность накопления не только палладия и платины, но и других, более электроположительных по сравнению с железом, компонентов, например никеля, меди и рения [41, с. 164], кремния и молибдена [20, с. 39], а в условиях возможной пассивации даже и менее электроположительных, но более пассивирующихся компонентов, например хрома. Это вытекает из исследований А. М. Сухотина [44], авторов [20, 43], И. К. Марша-кова с сотрудниками [45]. Особенно убедительно это было доказано прямыми определениями с использованием высокопрецизионного -спектрометрического изотопного метода в работах, проведенных в институте им. Л. Я. Карпова под руководством Я. М. Колотыркина [46].  [c.68]

Если металл в щели находится в активном состоянии и коррозия протекает в области кислородной деполяризации, то уменьшение концентрации окислителя приведет к понижению скорости коррозии. При определении кислорода в щели было установлено, что падение его концентрации зависит от конфигурации, времени и природы соприкасающихся металлов [54]. Средняя концентрация кислорода снилсается в начале опыта быстро, а затем медленнее и тем сильнее, чем уже щель (рис. 22). Сдвиг потенциала сплава при понижении концентрации кислорода в щели в отрицательную сторону приводит к увеличению скорости растворения только в случае активации пассивного состояния. Например, как показало снятие кривых для титана (рис. 23), в растворах Na l при pH=0,95, даже при отрицательных потенциалах, титан находится в пассивном состоянии. Петля активного растворения, свидетельствующая о возможности активации металла, обнаруживается только при значении pH=0,5 и ниже [56]. Аналогичные данные были получены для нержавеющих сталей в морской воде [54]. Было показано, что при уменьшении концентрации кислорода в зазоре (до 0,07 мг/л) происходит сильное смещение потенциала стали 12X13 в отрицательную сторону (до —0,45 В), а скорость коррозии стали изменяется мало 0,044 и 0,088 мг/(см2-сут) соответственно. При уменьшении pH раствора до 2,3 и ниже (подкисление добавкой H I) наблюдается сильное увеличение скорости коррозии— до 35 мг/(см2-сут) при pH =1,6.  [c.84]

Железо подвергается питтинговой коррозии в кислых, нейтральных и щелочных растворах, если находится в области пассивного состояния и в растворе одновременно присутствуют галоидные ионы С1 , Вг , 1 или IOJ" [41, с. 85 83 84]. Питтинговая коррозия железа наблюдается и в нейтральных растворах с S04 в области пассивно-активного состояния. В пассивной области ионы являлись ингибиторами питтинговой коррозии, вызванной С1 , как это было ранее установлено и для нержавеющих сталей [50].  [c.95]

В высокохромистых ферритных нержавеющих сталях (после закалки или нормализации с высоких температур) наиболее быстро растворяются в слабоокислительных условиях неравновесные обогащенные железом карбиды хрома, которые выпадают по границам зерен в процессе охлаждения. В дур-алюмине наибольшей скоростью растворения обладает интерметаллид СиАЬ, в то время как обедненный твердый раствор растворяется гораздо медленнее. Возникающие внутренние напряжения во всех случаях будут способствовать активации границ зерен. Внутренние напряжения могут усиливаться вследствие образования продуктов коррозии по границам зерен. Межкристаллитная коррозия гетерогенных сплавов может развиваться и в условиях, когда вся поверхность металла находится в активном состоянии, если имеется большая разница в равновесных потенциалах или поляризуемости структурных составляющих и физически неоднородных участков гетерогенного сплава. Она может медленно развиваться и при пассивнохМ состоянии зер на и границ зерен, если есть значительная разница в их скоростях растворения.  [c.57]

Минимальное количество ионов окисного железа, необходимое для ингибирования коррозии данной нержавеющей стали, может рассматриваться как мерило способности стали к пассивированию оно не связано со скоростью коррозии хметалла в активном состоянии. Если условий для образования защитной пленки не существует, то две нержавеющие стали различного состава могут характеризоваться одной и той же скоростью коррозии. Если же несколько изменить условия путем добавки ионов окисного железа, то сталь более легированная, будет реагировать быстрее, чем менее легированная, т. е. будет чувствительнее к меньшему содержанию ионов железа.  [c.178]

Из практики фазового анализа [24, 30]i а также анодных поляризационных измерений [116] следует, что карбиды хрома удается сравнительно легко переводить в пассивное состояние в кислых электролитах, содержащих высокие концентрации ионов С1", в том числе и в электролитах на спиртовой основе с малым содержанием воды. Известно, что в таких условиях нержавеющие стали запассивировать не удается [56, 116], а пассивирование хрома резко ухудшается [125]. В согласии с изложенным находится и тот факт, что введение в 3%-ный раствор КВг добавки 0,025 н. НС1 достаточно для перевода из пассивного в активное состояние сплава Н75Х25 и не достаточно для СГ7С31[114 .  [c.42]

В результате проведенных испытаний напряженных образцов нержавеющей стали в растворах серной кислоты с добавлением С1 -ионов было показано [159], что коррозионное растрескивание происходит лишь в определенной области потенциалов, соответствующей активному состоянию металла. Рекомендуется применение анодной защиты сталей типа Х18Н9 и Х24Н10 испытания на таких образцах в течение 1300—2700 ч при 30—50° (10 н. серная кислота с 0,5 н. соляной кислотой) показали надежность предлагаемого метода.  [c.127]

Один из характерных видов коррозии нержавеющих сталей — точечная коррозия, которая наблюдается в том случае, когда металл находится на границе пассивного и активного состояний. Обычно эта коррозия происходит в растворах, в которых наряду с пасснваторами присутствуют активные ионы, например С1 . Большая часть поверхности металла при этом остается пассивной, но в наиболее слабых местах (интерметаллические и другие включения, механические повреждения защитной пленки и др.) под действием активных ионов пассивная пленка нарушается и металл корродирует.  [c.125]


Смотреть страницы где упоминается термин Нержавеющая активное состояние : [c.85]    [c.85]    [c.107]    [c.168]    [c.271]    [c.86]    [c.88]    [c.132]    [c.154]    [c.154]    [c.291]    [c.30]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.16 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Активное состояние



© 2025 Mash-xxl.info Реклама на сайте