Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы титановые 2.530, 547 Коррозионная стойкость

Отечественная промышленность освоила выпуск титановых сплавов повышенной коррозионной стойкости марок 4200, 4207 и 4201, [10].  [c.16]

Титан — тугоплавкий металл [температура плавления (1665 5) С], плотность 4500 кг/м . Временное сопротивление чистого титана = 250 МПа, относительное удлинение б =70 %, он обладает высокой коррозионной стойкостью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей. Поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40 %. Одпако титан имеет низкую жаропрочность, так как при температурах выше 550— 600 °С легко окисляется и поглощает водород. Титан хорошо обрабатывается давлением, сваривается, из него изготовляют сложные отливки, но обработка его резанием затруднительна.  [c.19]


Сочетание прочности, легкости, термостабильности и коррозионной стойкости делает титановые сплавы превосходным конструкционным материалом, особенно когда конструкции работают в широком температурном диапазоне. В сверхзвуковой авиации, где вследствие аэродинамического нагрева температура оболочек достигает 500 —600°С, титановые сплавы используют для изготовления обшивок и силовых элементов. Благодаря малой плотности и хладостойкости иг широко применяют в космической технике. Из них изготовляют детали, подверженные высоким инерционным нагрузкам, в частности скоростные роторы, напряжения в которых прямо пропорциональны плотности материала. Температуростойкие титановые сплавы применяют для изготовления лопаток последних ступеней аксиальных компрессоров и паровых турбин. Высокая коррозионная стойкость при умеренных температурах обусловливает применение титановых сплавов в химической и пищевой промышленности.  [c.188]

Для соединения цветных металлов, а также для присоединения мягких материалов к металлическим деталям применяют заклепки из меди, латуни, бронз, алюминия и алюминиевых сплавов. При повышенных требованиях к коррозионной стойкости заклепки делают из нержавеющих сталей, монель-металла, никелевых и титановых сплавов.  [c.198]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]


Термическая обработка титановых сплавов может очень сильно влиять на склонность к коррозионному растрескиванию, при этом изменяются и и скорость распространения трещины. Важнейшие факторы здесь температура нагрева, время выдержки и особенно скорость охлаждения. Наиболее благоприятная термическая обработка всех титановых сплавов, повышающая их стойкость к коррозионному растрескиванию,—нагрев до температуры, близкой к (а + ) переходу, небольшая выдержка при этих температурах и быстрое охлаждение, при этом решающим фактором режима обработки является скорость охлаждения. Наоборот, длительные отжиги при средних и низких температурах и особенно с медленным охлаждением сильно увеличивают склонность сплавов к коррозионному растрескиванию. Естественно, что влияние термической обработки на сплавы различных классов неодинаково [36]. Сплавы а и псевдо-а-сплавы, если в них не более 6 % алюминия и нормированное содержание газовых примесей (Оа, М, На), ускоренным охлаждением от температур, близких к (о + /3) /3-переходу, можно перевести в разряд практически не чувствительных к растрескиванию в галогенидах. Термическая обработка (а + ) сплавов, легированных -изоморфными элементами, в меньшей степени влияет на их чувствительность к коррозионной среде, чем термообработка а-сплавов. Влияние термообработки на коррозионное растрескивание стабильных /3-сплавов мало изучено, но при этом общие закономерности сохраняются.  [c.40]

Титановые сплавы. Титановые сплавы обладают высокой коррозионной стойкостью по отношению к воздействию окружающей среды, и поэтому роль частоты нагружения, так же, как и выдержка под нагрузкой, в значительной мере определяется состоянием материала или его свойствами сопротивляться росту трещин при переменных условиях температурно-скоростного нагружения. Применительно к авиационным конструкциям следует отметить, что все многообразие разрушений титановых сплавов происходит при близких физико-механических характеристиках материала, которые регламентированы технологическим циклом изготовления той или иной детали. Следует оговориться, что речь не идет о ситуациях, когда разрушение материала в эксплуатации явилось следствием наличия в нем дефектов типа альфирован-ных, газонасыщенных или иных зон с измененными свойствами, в том числе с иными физико-меха-ническими характеристиками в дефектных зонах.  [c.359]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]


Все возрастающая роль титановых сплавов определяется возможностью облегчения массы без снижения прочностных характеристик деталей и уменьшения их коррозионной стойкости. По удельной прочности Ob/y титановые сплавы превосходят стали. Так, если у типовой конструкционной стали удельная прочность примерно равна 9,2, то у титанового сплава ВТ9 эта величина (при комнатной температуре) равна 18,8.  [c.94]

Испытания таких титановых сплавов, как ВТ1-1, ОТ4, АТ6 и АТ8, на территории Батумского машиностроительного завода, где сочетаются влажная приморская и промышленная атмосферы, в течение 8 лет показали их высокую коррозионную стойкость [78]. Таким образом, влияние метеорологических элементов на титановые сплавы незначительно и они могут эксплуатироваться и без средств заш,иты.  [c.75]

Переменное смачивание оказывает существенное влияние на процесс коррозии сплавов, в том числе меди и латуни. Сплавы на медной основе показали лучшую коррозионную стойкость в атмосфере, чем в морской воде. Во влажном субтропическом климате следует избегать контактов титановых сплавов с углеродистыми сталями и алюминием, так как последние разрушаются. Контакт титановых сплавов с нержавеющими сталями не представляет опасности ввиду малой разности их электродных потенциалов и сильной поляризуемости титановых сплавов. Титановые сплавы более коррозионностойкие, чем нержавеющие.  [c.102]

На коррозионную стойкость титанового сплава 0Т4 примесь воды не оказывает влияния.  [c.294]

Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки.  [c.413]

Титан обладает прекрасной коррозионной стойкостью в условиях погружения как на малых, так и на больших глубинах. Это один из немногих металлов, характеризующихся одинаковой, практически абсолютной стойкостью на всех глубинах. Склонность некоторых титановых сплавов к коррозионному растрескиванию под напряжением и гальванические эффекты при соединении титана с более анодными или катодными металлами обсуждаются ниже особо.  [c.119]

Титан и титановые сплавы обязаны своей коррозионной стойкостью защитной окисной пленке. Эта пленка не разрушается при воздействии окислительных растворов, в частности, содержащих хлор-ионы. Она очень стойка к коррозии и питтингообразованию в морских средах и других солевых хлоридных растворах.  [c.391]

Титановые сплавы (ВТЗ-1, ВТ-5, ОТ4-2, ВТ-2), отличающиеся высокой удельной прочностью, коррозионной стойкостью и жаропрочностью и находящие поэтому все большее применение. Предел прочности титановых сплавов достигает 150 кгс/мм при удельном весе 4,4—4,5 гс/см , применяются они при температурах не выше 600—700° С. Обрабатывать титановые сплавы с Xg 5 100 кгс/мм инструментом из быстрорежущей стали затруднительно. В зависимости от прочности сплава коэффициент снижения скорости резания по сравнению со сталью 45 колеблется в пределах 2—6.  [c.35]

Применение титановых сплавов в машиностроении перспективно, поскольку эти материалы обладают большой прочностью при сравнительно малом удельном весе и отличаются прекрасной коррозионной стойкостью во многих средах.  [c.64]

Кроме того, титановые сплавы обладают низким коэффициентом линейного расширения, высокой коррозионной стойкостью, немагнитностью. Так, титановый сплав Ti—6А1—4V не корродируют даже в присутствии ионов хлора.  [c.338]

Для снижения металлоемкости конструкций применяют титановые сплавы повышенной прочности и коррозионной стойкости по отношению к техническому титану. В ряде случаев применение титановых сплавов позволяет получить более чистый продукт или усовершенствовать технологический процесс, что дает существенный экономический эффект.  [c.234]

Сплавы титана разделяются на двух- и однофазные. Наибольшей удельной прочностью по сравнению с алюминиевыми, магниевыми сплавами и некоторыми легированными сталями обладают двухфазные (а -f Р) титановые сплавы. Они характеризуются также большой стойкостью против ползучести, высокой предельной усталостью и хорошей коррозионной стойкостью, а также низкими антифрикционными свойствами и хорошей жаропрочностью.  [c.181]

Кроме применения сплавов титана для изготовления деталей арматуры в промышленности применяется антикоррозионное покрытие на основе титановых порошков. В этом покрытии титановый порошок, состоящий из кристаллов с сильно развитой поверхностью, которые обладают высокой коррозионной стойкостью, применен как наполнитель, а вяжущее вещество — эпоксидная смола. Новое антикоррозионное покрытие по сравнению с известными имеет следующие преимущества высокую коррозионную стойкость, химическую устойчивость, высокую адгезию к металлу, что обеспечивает отличную сцеп-ляемость с защищаемой поверхностью, механическую прочность, долговечность, определяемую противодействием титанового порошка старению эпоксидной смолы.  [c.75]


Титан имеет преимущество перед другими конструкционными металлами сочетание легкости, прочности и коррозионной стойкости. Титановые сплавы по удельной прочности (т. е. прочности, отнесенной к плотности) превосходят большинство сплавов на основе других металлов при температурах от —250 до +550 °С, а по коррозионной стойкости они сравнимы со сплавами благородных металлов. Физические свойства титана приведены в табл. 8.32.  [c.297]

Одним из таких материалов является титан и его сплавы. Высокая коррозионная стойкость, коррозионно-механическая прочность, эрозионно-кавитационная стойкость, удельная прочность, нехладноломкость, немагнитность и ряд других физикомеханических характеристик позволяют рассматривать титановые сплавы как материалы, сочетающие в себе свойства разнообразных материалов. Это дает возможность из взаимосвариваемых титановых сплавов одной-двух марок изготавливать такие агрегаты и механизмы, где по условиям эксплуатации требуется применение ряда различных материалов, зачастую несвариваемых между, собой или несовместимых, например, из-за контактной коррозии. Важным преимуществом титановых конструкций является их высокая надежность, обусловленная отсутствием продуктов коррозии в системах, относительно малыми тепловыми деформациями из-за низкого коэффициента теплового расширения, отсутствием струевой коррозии и т. п. История промышленного производства титана кратковременна (20—25 лет), но уже в настоящее время титановые сплавы перестали быть экзотическими материалами и заняли достойное место в ряду широко известных конструкционных материалов.  [c.3]

Сплавы на основе титана. Физико-механические свойства и коррозионная стойкость технических марок титана м.огут бь[ть в значнтслы10Й степени повышены легированием их другими более стойкими элементами. Для изготовления титановых сплавов в качестве добавок берут элементы, образующие с титаном непрерывные или ограниченные твердые растворы двух-, трех- или многокомпонентных однофазных систем. Некоторые и.з этих сплавов обладают пределом текучести, достигающим 1000 Мн/лХ  [c.285]

Для получения сплавов титан легируют А1, Мо, V, Мп, Сг, Sn, Fe, Zr, Nb. Титан легируют для улучшения механических свойств, реже — для повьинення коррозионной стойкости. Удельная прочность (a /Y) титановых сплавов вьнне, чем легированных сталей.  [c.314]

Титан и его сплавы обладают исключительной совокупностью физико-химических свойств, которые выгодно выделяют их из остальных цветных сплавов. Основные преимущества титановых сплавов - сравнительно малая плотность (4,5 г/см ), высокие механические свойства в интервале температур от криогенных (-250°С) до умеренно высоких (600°С) и хорошая коррозионная стойкость в большинстве агрессивных сред. Эти сплавы в основном нехладноломкие.  [c.290]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Титановые сплавы. Сплавы титана с алюминием и медью и другими присадками (ВТЗ-1, ВТ5, ВТ9, ВТ16, ВТ22 и др.) имеют после термообработки высокую прочность (Сз = 900 1300 МПа) и малую плотность (р = 4,5 г/см ), высокую коррозионную стойкость. Их используют для изготовления корпусов, трубопроводов, крепежных деталей, заклепок и других деталей изделий авиационно-космической техники, судостроения, химической и пищевой промышленности.  [c.277]

Титан обладает тремя основными преимуш,ествами по сравнению с другими техническими металлами малым удельным весом (4,5 Г1см ), высокими механическими свойствами (предел прочности 50—60 кГ1мм у технического титана и 80—140 кГ/мм у сплавов на его основе) и отличной коррозионной стойкостью, подобной стойкости нержавеющей стали, а в некоторых средах и выше. Сочетание малого удельного веса с высокой прочностью, обеспечивающее наибольшую удельную прочность (т. е. прочность на единицу веса), делает титан особенно перспективным материалом для авиационной промышленности, а коррозионная стойкость — в судостроении и в химической промышленности. Для современной высокоскоростной авиации особенно ценным свойством титановых сплавов является также их высокая жаропрочность сравнительно с алюминиевыми и магниевыми сплавами. Титановые сплавы по абсолютной и тем более по удельной прочности превосходят магниевые, алюминиевые сплавы и легированные стали в довольно широком температурном интервале.  [c.356]

Наиболее вредной примесью в титановых сплавах, способствующей коррозионному растрескиван ию, является водород. Известно, что и без коррозионной среды примесь водорода может привести к хрупкости, но в агрессивных средах его вредное влияние сказывается на более ранней стадии. На рис. 28 представлена зависимость от содержания водорода в сплаве Т1—8 %А1 —1% / —1% Мо [33]. Видно, что стойкость к коррозионному растрескиванию этого сплава и на воздухе, и в 3 %-ном растворе НаС1 сильно зависит от содержания водорода в металле. При  [c.39]

Как отмечено ранее, исключительно высокая коррозионная стойкость и электрохимическая пассивность титановых сплавов вызваны наличием на поверхности металла инертных оксидных пленок. Если защитная пленка по какой-либо причине разрушается, как, например, при пластической деформации металла, то незащищенный металл корродирует до тех пор, пока на нем снова не образуется защитная пленка и дальнейшая реакция подавляется до нового разрушения пленки. В этих условиях коррозионный процесс возможен лишь в том случае, если скорость тре-щинообразования превышает скорость роста пленки. Естественно, эти соотношение могут сдвигаться при изменении физико-механических 56  [c.56]

Обычная коррозионная стойкость материала не является показательной в отношении склонности его к коррозионному растрескиванию. Известно, например, что высокопрочные деформируемые сплавы системы А1—Zn—Mg при хорошей общей коррозионной стойкости обладают высокой чувствительностью к КПН, особенно в зоне сварных соединений, что затрудняет их применение [64]. Углеродистые и малолегированные стали весьма стойки к общей коррозии в щелочной среде при повышенных температурах, в то же время они склонны к КПН в этих средах. Наоборот, многие магниевые сплавы, весьма чувствительные к общей коррозии, не проявляют существенной склонности к разрушению типа КПН, то же можно сказать о широко распространенном алюминиевом сплаве АК4 и др. Вместе с тем каверны, язвы и другие коррозионные повреждения, являясь концентраторами напряжений, часто служат очагами коррозионного растрескивания. Если материал склонен и к общей коррозии, и к КПН, трудно разделить эти два процесса как в начальной стадии, так и при развитии разрушения. Так, коррозионное растрескивание титановых сплавов ВТ6, ВТ 14 (термоупрочненного)  [c.73]


Коррозия. Общеизвестна высокая коррозионная стойкость титановых сплавов. Однако титановые сплавы могут подвергаться щелевой и питтинговой коррозии. Щелевая коррозия развивается при повышенных температурах >100°С и при наличии ионов С1", Вг и 1 . Концентрация этих ионов и геометрия щели также оказывают влияние на скорость воздействия. Питтннговая коррозия также развивается при наличии ионов С1-, Вг и 1 и даже при комнатной температуре, если металл анодно поляризуется и потенциалы питтингообразования снижаются с повышением температуры.  [c.415]

Титан обладает отличной коррозионной стойкостью к струевой и кавитационной коррозии в морской воде. Данные по эрозионной коррозии представлены на рис. 57 [72]. Наиболее высокую стойкость в этих испытаниях показали титановые сплавы Ti—6А1—4V и Ti—8А1—2Nb—ITa. Таким образом, благодаря сочетанию отличной стойкости при любых скоростях потока и высокой прочности титановые сплавы являются идеальными материалами для изготовления таких конструкций, как подводные крылья судов.  [c.120]

Учитывая прекрасную коррозионную стойкость титана в морской воде и солевых растворах, высказывалось предполол ение о возможности изготовления всей корабельной системы трубопроводов из титановых сплавов [241]. Титановые трубы все чаще используют в береговых теплообменниках с морской водой. Сообщалось о сооружении на береговых электростанциях 21 титанового конденсатора с общей мощностью 12424 МВт [242].  [c.201]

Для повышения износо- и коррозионной стойкости поверхности шпинделей подвергают азотированию или химическому никелированию и полируют. Некоторые зарубежные фирмы поверхности шпинделя, соприкасающиеся с сальниковой набивкой, наплавляют стеллитом. Плунжеры дросселирующих вентилей и регулирующих клапанов помимо коррозионной стойкости должны обладать высокой стойкостью против щелевой (размыв поверхности материала детали струей влажного пара, движущегося с большой скоростью через щель) и противоударной эрозии (разрушение поверхности материала детали, вызываемого точечными ударами капель воды, движущихся с большой скоростью). Стойкими против эрозии являются кобальтовые стеллиты, титановые сплавы и коррозионно-стойкие стали аустенитного класса.  [c.32]

Чистый титан имеет две модификации. До температуры 882,5°С он существует в виде а-титана с гексагональной решеткой, а выше температуры полиморфного превращения — в виде 0-титана с объемно-центрированной кубической решеткой. Как конструкционньгй материал титан в чистом виде, ввиду низкой прочности, почти не применяется. Титан обычно легируют различными а-ста6илиэирующими (А1, Ga, La, Се. N, С, О) и -стабилизирующими (Н, Nb, V, Мо, Сг, Fe, Со, Ni, Hf, Zr и др.) элементами, существенно изменяющими его структуру и свойства [ 135]. Высокая коррозионная стойкость титановых сплавов обеспечивается благодаря образованию на поверхности плотных химически мало активных оксидных пленок. Титановые сплавы стойки к сплошной и точечной коррозии в сероводородсодержащих средах, морской воде, углекислом и сернокислом газах и других средах. С помощью подбора легирующих элементов и режимов термической обработки сплавов удается достичь = 1500 МПа и более, что обеспечивает титановым сплавам наивысшую удельную прочность среди конструкционных металлических материалов.  [c.70]

В одной из первых работ [136] автором с сотр. на примере титанового сплава ВТЗ-1 показано, что несмотря на чрезвычайно высокую коррозионную стойкость этого сплава в ненапряженном состоянии коррозионная среда (3 %-ный раствор Na I) снижает его сопротивление усталостному разрушению.  [c.70]

Наблюдаемое влияние состава сплава ВТ14 на величину установившегося потенциала при одинаковых коэффициентах перегрузки можно, по-видимому, объяснить тем, что пассивная пленка содержит атомы легирующего компонента, влияющего на ее защитные свойства. Алюминий - основной легирующий элемент титановых сплавов повышая прочность, сопротивления сплавов ползучести, а также их упругие характеристики й не уменьшая резко пластичности и вязкости, он снижает коррозионную стойкость титана, особенно при неравномерном распределении в объеме металла.  [c.75]

Происходит замкнутая циркуляция стеклошариков в установке. Для повышения коррозионной стойкости деталей и исключения попадания на поверхность деталей инородных материалов стенки рабочей камеры облицованы пластиком, крепеж выполнен из титановых сплавов.  [c.144]

Применение в технике новых материалов — титановых сплавов, сплавов на основе никеля, кобальта и других металлов вызвало необходимость значительно расширить исследования по их коррозионной стойкости в различных средах и при различных температурах. В последнее время расширились исследования химической стойкости металлов и других материалов при высоких температурах, так как современные авиационные реактивные двигатели ЖРД и РДТТ работают при температурах, в несколько раз превышающих температуры обычных поршневых двигателей.  [c.16]

Човышение коррозионной стойкости заклешэк из алюминиевых сплавов достигается анодированием их в сернокислотных ваннах. Заклепки из углеродистых и легированных сталей оцинковывают или кадмируют. Заклепки из нержавеющих сталей и титановых сплавов защитных покрытий не требуют.  [c.293]


Смотреть страницы где упоминается термин Сплавы титановые 2.530, 547 Коррозионная стойкость : [c.6]    [c.187]    [c.18]    [c.106]    [c.122]    [c.48]    [c.65]    [c.418]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.2 , c.533 ]



ПОИСК



486 титановых

Сплавы Коррозионная стойкость

Сплавы титановые

Сплавы титановые 2.530, 547 Коррозионная стойкость Легирующие элементы

Сплавы титановые 2.530, 547 Коррозионная стойкость Назначение

Сплавы титановые 2.530, 547 Коррозионная стойкость и*-* Обработка термическая

Сплавы титановые 530, 547 Коррозионная стойкость 533Леггци ощие элементы

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте