Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оксиды вольфрама

Помимо скорости окисления того или иного чистого металла Ш1и компонента сплава, большое влияние на срок жизни -нагревательного элемента, работающего на воздухе, оказывают свойства образующегося оксида. Если оксид летуч, то он не может защитить оставшийся металл от дальнейшего окисления. Легко улетучиваются, например, оксиды вольфрама и. молибдена, поэтому такие металлы не могут работать в накаленном  [c.37]

Введение в шихту вольфрама марки ВП до 0,02 % иттрия или титана уменьшает концентрацию легкоплавких оксидов вольфрама по границам зерен, что приводит к понижению порога хладноломкости до -300 °С.  [c.138]


Помимо скорости окисления того или иного чистого металла или компонента сплава большое влияние на срок жизни нагревательного элемента, работающего на воздухе, оказывают свойства образующегося оксида. Если он летуч, то он удаляется с поверхности металла и не можег защитить оставшийся мегалл от дальнейшего окисления. Так, оксиды вольфрама и молибдена легко улетучиваются, а потому эги металлы не могут работать в накаленном сосгоянии ири доступе кислорода. Если же оксид нелетуч, то он при окислении образует слой на поверхности металла.  [c.221]

Количество кокса на колошу шихты (на 100 кг концентрата) устанавливается, исходя из основного условия ведения процесса — плавки на рабочем шлаке с высоким содержанием оксида вольфрама ( 10 /o WO ), что предотвращает переход в сплав примесей (углерода, кремния, марганца) и составляет обычно 7—11 кг. Количество железа, необходимое на 100 кг концентрата, рассчитывают из условия получения сплава с 74 % W. Расход ферросилиция составляет 8 кг (на 100 кг концентрата) на колошу шихты. Этот расход должен обеспечить получение отвальных шлаков с содержанием <0,30 % WO3. При увеличении доли шеелита увеличивается и навеска ферросилиция [32, с. 94— 98], что видно из данных, приведенных ниже.  [c.259]

Механическим путем измельчают металлы, керамику, полимеры, оксиды, хрупкие материалы. Степень измельчения зависит от вида материала. Так, для оксидов вольфрама и молибдена получают крупность частиц порядка 5 нм, для железа - порядка 10...20 нм.  [c.14]

Вольфрамат кобальта Фтористый калий Фтористый натрий Оксид вольфрама Оксид кобальта Оксид бора 0,1-8 5-8 2-4 1-10 0,1-1 Ост. 1000-1200 Пайка твердосплавного инструмента  [c.240]

Основной материал для производства твердого сплава - вольфрамовая руда. Вольфрамовый порошок получается из оксида вольфрама, восстановленного химически из руды. Различные условия получения вольфрама влияют на размер отдельных зерен порошка. Партии вольфрамового порошка разного размера поступают на стадию производства карбида вольфрама. Порошки вольфрама и углерода тщательно взвешиваются и перемешиваются. Затем смесь загружается в печи, где в нейтральной атмосфере вольфрам и углерод соединяются в карбид вольфрама. Прежде чем продолжить путь по технологической цепи, карбид проверяется на содержание чистого углерода, на кристаллическую структуру и размер зерна.  [c.286]

В ниобии и тантале технической чистоты примеси внедрения при обычном их содержании находятся в растворе, а в молибдене и вольфраме (вследствие малой растворимости) — в виде дисперсных выключений — карбидов, нитридов, оксидов, располагающихся по границам зерен или в приграничных объемах. Это способствует хрупкому разрушению, и порог хрупкости у молибдена и вольфрама резко сдвигается в область более высоких температур.  [c.532]


Оксид алюминия оказывает также отрицательное влияние на стабильность горения сварочной дуги при сварке на переменном токе вследствие существенного различия физических условий для эмиссии электронов с вольфрама и алюминия при смене полярности (физические особенности дуги на переменном токе подробно рассмотрены в разд. I). Для сварки алюминиевых сплавов на переменном токе используют специальные источники питания, которые позволяют устранить вредное влияние на стабильность горения дуги постоянной составляющей (металлургия сварки подробно рассмотрена в работе [16]).  [c.387]

Наиболее распространенными покрытиями, которые наносятся плазменной струей на детали ГТД и трущийся инструмент, являются жаростойкие покрытия из молибденового порошка, оксида алюминия (АЬОз), карбидов вольфрама и кобальта, титана, циркония, хрома, а также из сочетаний Ni-Al, Ni- r, r-Al-Y, Ni-Ti и др.  [c.439]

Рис. 25.2. Изменение работы выхода поверхностей (100) вольфрама [I), (100) иридия (2) и сплава осмий — иридий (3), покрытых пленкой оксида бария толщиной (0,8) монослоя, при нагревании [5] Рис. 25.2. Изменение <a href="/info/7349">работы выхода</a> поверхностей (100) вольфрама [I), (100) иридия (2) и <a href="/info/189717">сплава осмий</a> — иридий (3), <a href="/info/191027">покрытых пленкой</a> оксида бария толщиной (0,8) монослоя, при нагревании [5]
Кислород при незначительном содержании (табл. 15) оказывает сильное влияние на снижение пластичности вольфрама, молибдена, хрома за счет образования по границам зерен оксидов.  [c.526]

Комплексная добавка оксидов калия, кремния и алюминия позволяет значительно повысить высокотемпературную ползучесть вольфрама. Проволока из чистого вольфрама при 2250 0 под напряжением 13 МПа разрушается через 3 ч, тогда как проволока из вольфрама с добавками— через 28 ч [1].  [c.135]

Наличие в вольфраме дуговой вакуумной плавки 0,005—0,010 % кислорода приводит к образованию межкристаллитных оксидов, слабосвязанных с матрицей (/х=400- -600°С), а наличие >0,005 % С — к образованию хрупких карбидов, также ослабляющих межкристаллитную прочность н приводящих к хрупкости при температуре ниже 300— 500 °С.  [c.137]

Так как порошковое покрытие пористое, то оно не препятствует диффузии атомов азота к поверхности защищаемого металла. Наоборот, за счет усиления адсорбционных и абсорбционных процессов ускоряется насыщение поверхности азотом и образование на ней нитридов тех элементов, которые входят в состав защищаемого металла (железа, хрома, вольфрама, титана, алюминия и др.). Поскольку нитриды имеют плотность меньшую, чем металлы (плотность оксидов 3—5 г/см , а плотность стали 7,8 г/см ), то при образовании нитриды заполняют микропоры порошкового покрытия, увеличивая тем самым сцепляемость по типу механического зацепления. Одновременно повышается термостойкость покрытия, так как образовавшиеся нитриды играют роль прослойки с коэффициентом термического расширения, близким к порошковым материалам на основе оксидов. Нитридная прослойка обеспечивает также коррозионную стойкость защищаемого металла.  [c.269]

Третья категория компонентов - фрикционные добавки, обеспечивающие порошковому материалу требуемый коэффициент трения и оптимальный уровень зацепления с рабочей поверхностью контртела. Такие добавки должны иметь высокие температуру плавления и теплоту диссоциации, не претерпевать полиморфных превращений в заданном интервале температур, не взаимодействовать с другими компонентами материала и с защитной средой при спекании, быть достаточно прочными и твердыми, хорошо сцепляться с металлической основой. Поэтому более широко в качестве фрикционных добавок используют оксиды кремния, алюминия, железа, магния, марганца, циркония, хрома, титана и др., некоторые карбиды (кремния, бора или вольфрама), силициды (железа и молибдена), или бориды (редких металлов и др.). К материалам на бронзовой основе в качестве фрикционного компонента добавляют железо, в том числе в виде чугунной крошки, вольфрам, хром, молибден и некоторые другие. Эффективно. Введение в состав порошкового фрикционного материала некоторых интерметаллидов, например алюминия и титана.  [c.61]


Некоторое количество высокопроцентного ферровольфрама получают в СССР алюминотермическим методом в электропечи из шеелитового концентрата марок КМША и КМШО. Принят следующий состав шихты 100 кг шеелн-тового концентрата, 23 кг алюминиевой крупки и 3 кг железной обсечки. Для уменьшения выноса пылевидного концентрата его брикетируют вместе с алюминиевой крупкой, добавляя на 100 кг концентрата 1,6 кг декстрина, 2,44 кг сульфитного щелока и 5 кг воды. Плавку ведут на блок при рабочем напряжении 65 В и токе 6 кА шахта печи сменная, футерована набивкой из электродной массы металло-приемник и подину футеруют магнезитовым кирпичом. Процесс ведут с нижним запалом, продолжительность проплав- ления навески шихты (на 2,5 т концентрата) 1 ч, после чего производится раскисление шлака смесью алюминиевой крупки с молотой известью. Основную часть шлака выпускают через летку, расположенную на 100—150 мм выше уровня раздела фаз, а блок сплава остается в печи до полного затвердевания, затем его дробят и сортируют. Содержание оксида вольфрама в отвальном шлаке составляет <0,2%. Расход материалов на 1 баз. т (72% W) сплава при этом способе выплавки ферровольфрама следующий 295 кг алюминия первичного чушкового, 1550 кг шеелита (60 % WO3), 16 кг железной руды, 8 кг извести, 50 кг железной стружки, 19 кг электродов графитированных, расход электроэнергии 7200 МДж (2000 кВт-ч). Извлечение вольфрама составляет 97 %.  [c.268]

Кислородная резка стали с содержанием до 10 % вольфрама осуществляется без затруднений. При более вьТсоком содержании вольфрама в разрезе образуется большое количество вязких тугоплавких оксидов вольфрама, препятствующих удалению расплава из реза. Для резки таких сталей необходимы специальные способы кислородной резки.  [c.348]

В связи с большой плотностью и высокой температурой плавления куски ферровольфрама и ферромолибдена опускаются на подину печи и длительное время находятся там, не растворяясь в металле. Для ускорения их растворения и уменьшения потерь вольфрама и молибдена ванну интенсивно перемешивают металлическими гребками. После полного расплавления шихты проводят восстановительный период, во время которого тщательно раскисляют шлак порошками кокса и ферросилиция, добиваясь максимального восстановления оксидов вольфрама, хрома и ванадия шлака. В начале восстановительного периода присадками извести повьпцают основность печного шлака, чтобы облегчить его раскисление и провести десульфурацию металла. Оптимальным в это время является значение основности (СаО) / (SiO,) = 1,5—2,0 [28]. При этом обеспечивается минимальное значение коэффициентов распределения вольфрама, хрома и ванадия между шлаком и металлом. Для более полного восстановления оксидов легирующих шлак в конце восстановительного периода дополнительно раскисляют порошками алюминия и силикокальция.  [c.156]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]

Если ЭТО отношение меньше единицы, то в пленке возникают напряжения растяжения, и они защищают металл. Для кальция и магния, образующих оксиды со слабыми защитными свойствами, подобные отношения равны 0,64 и 0,79 соответственно, а для алюминия и хрома, образующих защитные оксиды, — 1,3 и 2,0. Для вольфрама данное отношение равно 3,6, а оксид WOg обладает хорошйми защитными свойствами вплоть до температуры 800 °С при более высокой температуре он возгоняется.  [c.191]

Для электронно-лучевых катодов иногда используют покрытия с оксидами щелочноземельных элементов и применяют неметаллические материалы, например ТНОг, лантанборид LaBe и др. Они имеют самую низкую работу выхода (до 1,0...1,2 эВ) и высокую эмиссионную способность при меньших температурах нагрева, чем для катодов из чистого вольфрама.  [c.68]

Наиболее широкое применение находят неплавяшиеся W-электроды из лантанированного (добавки оксида лантана до 2%) и итрированного (добавки оксида иттрия до 2%) вольфрама в виде прутков диаметром от 1 до 4 мм (марки соответственно ВЛ-2 и ВЛ-10, СВИ-1).  [c.385]

Значения ат хорошо изучены для многих технически важных материалов (табл. 25.1). Для металлов значения ат невелики (от 0,1 до 0,3), а для оксидов металлов и угля они значительны (от 0,5 до 0,9). Так как ат для нечерных тел меньше единицы, то истинная температура всегда больше радиационной. Например, при истинной температуре вольфрама 3000 К радиационный пирометр показывает температуру  [c.148]

Металлопористый вольфрамово-бариевый термокатод — пористая вольфрамовая губка, внешняя поверхность которой покрыта пленкой бария, снижающей работу выхода и обеспечивающей получение большого тока ТЭ. В процессе работы пленка бария разрушается вследствие ионной бомбардировки и под воздействием газов, выделяющихся из деталей приборов. Возобновление пленки происходит вследствие поступления бария из вольфрамовой губки при термическом разложении содержащегося в ней активного вещества. Существует несколько типов металлопаристых термокатодов камерные, или L-катоды — состоят из камеры, заполненной активным веществом — карбонатом бария-стронция — и закрытой стенкой-губкой, наружная сторона которой является эмиттирующей поверхностью пропитанные — пористая губка из вольфрама, рения или молибдена, поры которой заполнены активным веществом — алюминатом или вольфраматом бария-кальция и прессованные. Последние изготовляются в виде таблеток или керамических трубок, путем спрессовывания смеси из порошков оксида иттрия или оксида тория и порошков тугоплавких металлов (вольфрам, молибден, тантал). Катоды этого типа так же, как и оксидпо-ториевый, работают при температурах 1700—1800° С и предназначены для использования в СВЧ-приборах, главным образом в магнетронах.  [c.571]


Известно, ЧТО в зависимости от назначения покрытий и для придания специальных свойств в покрытия в качестве дисперсной фазы могут добавляться твердые упрочняющие абразивные частицы (окислы циркония и алюминия, каолин, карбиды кремния, титана, вольфрама) и мягкие слоистые частицы твердых смазок (гексагональный нитрид бора, графит, дисульфид молибдена и др.). Для увеличения твердости и сопротивления истиранию в покрытие включается от 25 до 50 % неметаллических частиц, таких, как карбиды, оксиды, бориды, нитриды. Включение в покрытие дисперсных частиц влияет на водородосодержание и величину внутренних напряжений осадков.  [c.106]

Относительное сужение проволоки из спеченных штабиков вольфрама без присадок — марка ВЧ — выше, чем вольфрама с добавками оксидов марка ВА (0,02—0,05 % 5102, 0,01 % К2О и 0,001—0,003 % АЬОз), марка ВМ (0,02—0,05 % ЗЮз, 0,01 % К2О, 0,17—0,25% ТЬОз), марка ВТ (1,1—1,5 % ТЬОз) [1].  [c.134]

Кислород — очень вредная примесь в вольфраме. Нераскисленные образцы вольфрама, полученные и электронно-лучевой плавкой и спеканием порошков, содержат повышенную концентрацию кислорода. При наличии 0,001-—0,005 % кислорода на границе зерен имеются оксиды во.тьфрама (которые обнаруживаются только электронно-микроскопическим методом) [35]. Это приводит к межкристаллитному разрушению образцов и практически исключает возможность обработки давлением. Добавка раскислителей, в частности углерода, способствует снижению содержания кислорода, очищению границ зерен и повышению их прочности. Это позволяет обрабатывать вольфрам давлением при повышенных температурах [1].  [c.135]

При более высоких давлениях кислорода 10" , 1 мм рт. ст. на поверхности (Мо, W)53iз оксид ЗЮ2 образуется в большем количестве, формируя защитную пленку, и в начальный период окисления наблюдается увеличение массы образца. При циклических медленных охлаждениях и нагревах в покрытии возникают трещины. В трещинах из-за пониженного давления кислорода происходит образование и испарение монооксида ЗЮ, а также оксидов молибдена и вольфрама. Оксиды молибдена и вольфрама, образующиеся в процессе нагрева и охлаждения, приводят к расклиниванию трещин и росту их в глубь покрытия. Монооксид ЗЮ, а также оксиды молибдена и вольфрама, образующиеся и испаряющиеся при высокой температуре, приводят к увеличению поперечного размера трещин. В результате этих процессов окисление образцов сплава сопровождается убылью их массы.  [c.201]

Чаще всего демпферы изготовляют из композиционных материалов, состоящих из связующего элемента и рассеивателей. В качестве первых используют компаунды или эпоксидные смолы типа ЭД-5, ЭД-6, а в качестве вторых — порошки тяжелых металлов и их оксидов, а также измельченные кварц, карбид титана, вольфрама или свинца. В серийных прямых ПЭП используют демпферы, полученные горячим прессованием порошка вольфрама и связующего пенопласта, в качестве клеящей массы служат эпоксидные клеи. Эти демпферы обладают достаточно высоким коэффициентом затухания (до 420 м ) и большим акустическим сопротивлением (до 15-10 Па-с/м). Вследствие высокой электрической проводимости таких демпферов и электрического контакта между ними и пьезоэлементом при приклеивании к последнему исключается необходимость пайки контакта к нерабочей поверхности пьезопластины.  [c.142]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

Механохимический синтез порошков боридов, карбидов, силицидов, оксидов, сульфидов переходных металлов был осуществлен взрывным методом в вибромельницах [109, 110] инициирование быстро протекающей реакции синтеза осуществлялось механоактивацией порошков исходных компонентов (металла и углерода, бора или кремния) в течение нескольких минут. Изучение Порошков карбидов бора, титана, циркония, гафния, ванадия, тан- 1 ла, вольфрама, полученных механохимическим синтезом в Мельницах, показало, что средний размер частиц составляет 6— нм [111]. Порошки нитридов переходных металлов с размером  [c.39]

Поскольку поверхностная энергия является заметной величиной по сравнению с объемной, то из условия (3.1) следует, что для понижения полной энергии системы более выгодна такая деформация кристалла, при которой поверхностная энергия будет понижаться. Подобное понижение может быть реализовано изменением кристаллической структуры наночастицы по сравнению с массивным образцом. Поверхностная энергия минимальна для плотноупакованных структур, поэтому для нанокри-сталлических частиц наиболее предпочтительны гранецентри-рованная кубическая (ГЦК) или гексагональная плотноупако-ванная (ГПУ) структуры [7, 8], что и наблюдается экспериментально. Так, электронографическое исследование нанокристаллов ниобия, тантала, молибдена и вольфрама размером 5—10 нм показало [199], что они имеют ГЦК- или ГПУ-структуру, тогда как в обычном состоянии эти металлы имеют объемно центрированную кубическую (ОЦК)-решетку. В наночастицах бериллия и висмута найдены кубические фазы, хотя в массивном состоянии эти элементы имеют ГПУ-решетку [200]. Массивные кристаллические образцы гадолиния, тербия и гольмия имеют ГПУ-структуру. Авторы [201, 202], изучившие структуру частиц Gd, ТЬ и Но размером от 110 до 24 нм, обнаружили в них следы ГЦК-фазы и показали, что с уменьшением размеров в частицах растет содержание ГЦК-фазы и уменьшается количество ГПУ-фазы. В нанокристаллах Gd размером 24 нм ГПУ-фаза, характерная для массивных образцов, вообш е отсутствовала. Однако в [10] высказано сомнение в правильности выводов [201, 202] о ГПУ—ГЦК-переходе, так как наблюдавшиеся на рентгенограммах наночастиц Gd, Td и Но дифракционные отражения могли принадлежать низкотемпературным кубическим модификациям оксидов этих металлов. Уменьшение размера частиц некоторых элементов (Fe, Сг, d, Se) приво ило к потере кристаллической структуры и появлению аморфной [200, 203]. В обзоре [198] отмечено, что понижение поверхностной энергии частицы может происходить путем не только полного изменения ее кристаллической структуры, но и некоторой деформации структуры. Например, малые частицы могут иметь  [c.63]



Смотреть страницы где упоминается термин Оксиды вольфрама : [c.134]    [c.261]    [c.262]    [c.263]    [c.39]    [c.186]    [c.66]    [c.421]    [c.313]    [c.570]    [c.138]    [c.267]    [c.377]    [c.24]    [c.58]    [c.94]    [c.96]    [c.98]   
Производство ферросплавов (1985) -- [ c.255 ]



ПОИСК



Вольфрам

Оксиды

Оксиды ниобия и вольфрама



© 2025 Mash-xxl.info Реклама на сайте