Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оксиды ниобия и вольфрама

Оксиды ниобия и вольфрама 303  [c.423]

В ниобии и тантале технической чистоты примеси внедрения при обычном их содержании находятся в растворе, а в молибдене и вольфраме (вследствие малой растворимости) — в виде дисперсных выключений — карбидов, нитридов, оксидов, располагающихся по границам зерен или в приграничных объемах. Это способствует хрупкому разрушению, и порог хрупкости у молибдена и вольфрама резко сдвигается в область более высоких температур.  [c.532]


Влияние легирующих элементов на свойства стали. Легирование стали никелем повышает ее прокаливаемость этому же способствуют присадки марганца, молибдена, хрома, бора. Никель увеличивает также вязкость и пластичность стали, понижает температуру порога хладноломкости. Однако никель дорог, поэтому его вводят в сочетании с марганцем или хромом. Понижение порога хладноломкости достигается также присадкой хрома, молибдена, вольфрама, ванадия, титана, ниобия и циркония, которые образуют дисперсные труднорастворимые в аустените карбиды и препятствуют росту зерна аустенита. Рост зерна аустенита задерживается также присадкой алюминия, присутствующего в виде дисперсных оксидов. Молибден и вольфрам повышают также стойкость стали к отпуску. Кобальт (как и никель) полностью взаимно растворим с железом, повышает точку и способствует понижению количества остаточного аустенита в закаленной стали.  [c.112]

Керамические КМ на основе карбидов и оксидов с добавками металлического порошка (< 50 % (об.)) называются керметами. Они не нашли широкого применения из-за высокой хрупкости. Помимо порошков для армирования керамических КМ используют металлическую проволоку из жаропрочной стали, вольфрама, молибдена, ниобия, а также неметаллические волокна (углеродные, керамические). Ориентация волокон в зависимости от условий нагружения может быть направленной или хаотичной.  [c.461]

Рассмотрены закономерности дисперсионного упрочнения ниобия, ванадия, тантала, хрома, молибдена, вольфрама и сплавов на их основе тугоплавкими карбидами, нитридами, оксидами переходных металлов четвертой группы.  [c.2]

Важное условие предупреждения горячих трещин — выбор соответствующего присадочного материала. При сварке аустенитных сплавов стремятся получить наплавленный металл, имеющий в своем составе вторую фазу в виде мелкодисперсных включений феррита, карбидов ниобия, термодинамически устойчивых нитридов типа TiN, тугоплавких оксидов. Легирование сварных швов аустенитных сталей и никелевых сплавов большими количествами молибдена, вольфрама, тантала, при которых подавляется процесс высокотемпературного разрушения, эффективно только при условии жесткого ограничения содержания в сварочной ванне кремния, фосфора, серы, легкоплавких примесей и газов [4, с. 141 5]. Положительные результаты дает рафинирование металла сварочной ванны или модифицирование структуры шва с помощью галоидных или высокоосновных флюсов-шлаков [9, с. 148 и 155].  [c.73]


Химико-металлургические способы связаны с восстановлением металлов из оксидов и других соединений, например, при получении порошков железа, меди, вольфрама (форма частиц порошков губчатая, пористая) электролитическим осаждением из растворов солей металлов (порошки меди, никеля, кобальта, цинка, свинца, олова, серебра, хрома форма частиц сферическая), металлотермическим восстановлением (при производстве порошков титана, ниобия, циркония, тантала форма частиц тарельчатая).  [c.142]

Подобные результаты были получены для большого числа близких систем оксидов, образованных лежащими рядом прямоугольными- блоками металлокнслородных октаэдров, образующих конфигурацию, подобную структурам типа КеОд, включая различные оксиды титана и ниобия и оксид Nb205 [2261, а также некоторые оксиды ниобия и вольфрама и другие, обладающие сверхструктурами, основанными на структуре типа вольфрамовой бронзы [228, 2291 (см. фиг. 13.6).  [c.303]

Поскольку поверхностная энергия является заметной величиной по сравнению с объемной, то из условия (3.1) следует, что для понижения полной энергии системы более выгодна такая деформация кристалла, при которой поверхностная энергия будет понижаться. Подобное понижение может быть реализовано изменением кристаллической структуры наночастицы по сравнению с массивным образцом. Поверхностная энергия минимальна для плотноупакованных структур, поэтому для нанокри-сталлических частиц наиболее предпочтительны гранецентри-рованная кубическая (ГЦК) или гексагональная плотноупако-ванная (ГПУ) структуры [7, 8], что и наблюдается экспериментально. Так, электронографическое исследование нанокристаллов ниобия, тантала, молибдена и вольфрама размером 5—10 нм показало [199], что они имеют ГЦК- или ГПУ-структуру, тогда как в обычном состоянии эти металлы имеют объемно центрированную кубическую (ОЦК)-решетку. В наночастицах бериллия и висмута найдены кубические фазы, хотя в массивном состоянии эти элементы имеют ГПУ-решетку [200]. Массивные кристаллические образцы гадолиния, тербия и гольмия имеют ГПУ-структуру. Авторы [201, 202], изучившие структуру частиц Gd, ТЬ и Но размером от 110 до 24 нм, обнаружили в них следы ГЦК-фазы и показали, что с уменьшением размеров в частицах растет содержание ГЦК-фазы и уменьшается количество ГПУ-фазы. В нанокристаллах Gd размером 24 нм ГПУ-фаза, характерная для массивных образцов, вообш е отсутствовала. Однако в [10] высказано сомнение в правильности выводов [201, 202] о ГПУ—ГЦК-переходе, так как наблюдавшиеся на рентгенограммах наночастиц Gd, Td и Но дифракционные отражения могли принадлежать низкотемпературным кубическим модификациям оксидов этих металлов. Уменьшение размера частиц некоторых элементов (Fe, Сг, d, Se) приво ило к потере кристаллической структуры и появлению аморфной [200, 203]. В обзоре [198] отмечено, что понижение поверхностной энергии частицы может происходить путем не только полного изменения ее кристаллической структуры, но и некоторой деформации структуры. Например, малые частицы могут иметь  [c.63]

Добавки металлов IV-a и V-a групп сложным образом влияют на жаростойкость вольфрама (рис. 14.22). Ниобий и тантал улучшают жаростойкость вольфрама при 1000. .. 1460 °С благодаря образованию двойных оксидов и воль-фраматов. Легирование сплавов W—Сг титаном (W — О. .. 14 Сг—О. .. 1,5 Ti) и одновременное легирование вольфрама ниобием (О. .. 13 %), танталом (О. .. 15 и 25. .. 50 %) и молибденом (О. .. 2,5 %) приводит к резкому уменьшению скорости окисления на воздухе при 1200 "С. Минимальная скорость 1 мг-см Ч достигается при легировании вольфрама хромом (8 %) и титаном (1,5 %), Поскольку титан стабилизирует вольфраматы ниобия и тантала, перспективны сплавы систем W—Nb—Ti и W— Та—Ti. Максимальная жаростойкость получена на сплавах W—Сг—Pd (скорость окисления 0,01 и 1,5 мг-см -ч"1 при 1200 и 1400 С для сплава W— 10 Сг—1 Pd), а время до разрушения — 550, 100 и 14 при 1200, 1400 и 1800 °С  [c.431]

Металловедению ванадия, ниобия, молибдена, вольфрама, хрома и их сплавов посвяш ены обстоятельные монографии советских ученых [1—4 и др.]. Физико-химические принципы разработки жаропрочных сплавов в связи с диаграммами состояния, основанные на учении академика Н. С. Курнакова, развиты в обобш,ающих трудах [5—8]. Структура и свойства тугоплавких металлов и их сплавов детально рассмотрены в монографиях [9—12]. Систематически изложены также теория и практика дисперсионного упрочнения сплавов железа, никеля и кобальта [13—16], Однако дисперсионное упрочнение тугоплавких металлов, представляюш.ее наиболее важный метод повышения жаропрочности их сплавов, пока еш,е не получило адекватного освещения. Исследования дисперсионного упрочнения тугоплавких мета.рлов карбидами, нитридами, оксидами, боридами переходных металлв, опубликованные в периодической литературе, были детально проанализированы с позиций физичеС кого металловедения [11], однако необходима систематизация и дальнейшее обобщение имеющихся данных в аспекте электронного строения и физико-химического анализа сплавов. В монографии сделана попытка восполнить этот пробел.  [c.3]


Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

Катоды и другие изделия. Катоды электровакуумных приборов изготовляют из вольфрама, тантала и ниобия, в том числе с присадкой оксида тория или с покрытием в виде поверхностного слоя из смеси оксидов Ва, Sr, Са + Ва. Во многих случаях весьма эффективны катоды из различных тугоплавких соединений, напримерLaB ,Zr , Nb , ТаС, Hf и др. Так, горячепрессованные катоды из гексаборида лантана при рабочей температуре 1600- 1700 °С позволяют получать большие плотности эмиссионных токов (> 10 А/см ).как в импульсном, так и в стационарном режимах, работая в ускорителях заряженных частиц, мощных генераторных устройствах, электронно-лучевых установках для плавки и сварки металлов. Используя метод эрозии или ультразвук, можно вырезать из горячепрессованных заготовок катоды сложной конфигурации.  [c.206]

Вольфрам представляет большой интерес для техники, как основа конструкционных материалов, работающих при температурах выше 2273К, Дисперсное упрочнение южет быть осуществлено карбидами, нитридами и оксидами. Присутствие дисперсных частиц стабилизирует структуру, повышает температуру начала рекристаллизации вольфрама и обеспечивает высокие механические свойства. Наиболее эффективно повышают прочностные свойства вольфрама дисперсные карбидьг Упрочнение карбидами применяют в сочетании с твердорастворным упрочнением за счет легирования рением, ниобием, танталом, молибденом.  [c.122]


Смотреть страницы где упоминается термин Оксиды ниобия и вольфрама : [c.25]    [c.80]   
Физика дифракции (1979) -- [ c.303 ]



ПОИСК



Вольфрам

Ниобий

Ниобий—вольфрам

Ниобит 558, XIV

Оксиды

Оксиды вольфрама

Оксиды ниобия



© 2025 Mash-xxl.info Реклама на сайте