Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растворы термические свойства

Упрочняющая термическая обработка алюминиевых сплавов сводится к закалке (фиксированию -твердого раствора на основе алюминия) и последующему старению пересыщенного твердого, раствора. Механические свойства зависят от правильности соблюдения температурных режимов при нагреве деталей под закалку и старение, выдержки времени переноса деталей в закалочную ванну и т. д.  [c.75]

Термические свойства растворов  [c.239]


Составы растворов (262). 5-7-2. Законы Рауля и Генри (262). 5-7-3 Растворимость (262). 5-7-4. Термические свойства  [c.140]

ТЕРМИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ  [c.264]

Двухфазные сплавы с (а + -структурой имеют при комнатной температуре структуру а- и р-твердых растворов, термически обрабатываются, пластичны, обладают высокими механическими свойствами.  [c.169]

Как показывает изменение твердости при термической обработке, все же не удается сообщить гальваническим пересыщенным твердым растворам все свойства литых и рекристаллизованных сплавов. Сильные внутренние напряжения, встречающиеся преимущественно в пересыщенных тверды.х растворах и независящие от изменений константы решетки, препятствуют падению твердости. Одновременно они служат причиной появления сильных остаточных напряжений, которые при отжиге сплавов способствуют снижению прочности покрытия, образуя волосяные трещины. Эти процессы представляют интерес для практического применения покрытий сплавами.  [c.102]

Таким образом, кажущаяся теплоемкость растворенного вещества представляет собой отнесенную к одному молю этого вещества разность между теплоемкостью раствора и теплоемкостью чистой воды. При введении понятия кажущейся теплоемкости все различие между термическими свойствами водного раствора и воды произвольно относится к растворенному веществу, так как вычисление Фс производится в предположении, что теплоемкость воды в растворе равна теплоемкости чистой воды.  [c.288]

В табл. 9.9 приведены механические свойства химических N1—Р-покрытий различного состава. Наибольшей прочностью на разрыв характеризуются осадки, полученные в щелочных цитратных хлоридных растворах. Термическая обработка при  [c.378]

Термические свойства р, кг/см -, °С V, м /кг водного раствора (концентрация 96% по объему) на линии насыщения [118]  [c.359]

Химическое никелирование. Химическое никелирование осуществляется без приложения тока извне за счет восстановления ионов никеля из кислых или щелочных растворов его солей гипофосфитом натрия или кальция. Химическое никелирование проводится при температуре 90—95° С. После термической обработки при 400° С твердость покрытия возрастает до 10000 Мн/м -с повышением температуры термообработки до 600° С твердость покрытия приближается к твердости хрома. При толщине 25— 30 мкм пленка практически беспориста. Антикоррозионные свойства покрытия при этом высокие.  [c.331]


Наиболее важным является превращение а у и связанное с ним изменение свойств, поскольку при обычных температурах в структуре стали имеется твердый раствор на основе а-Ре, а для большинства видов горячих технологических процессов нагрев производится до структуры твердого раствора на основе у-Ре. Между тем а-Ре и у-Ре имеют разные удельные веса, плотности, магнитные и другие физические свойства. Растворимость С в этих модификациях Ре также различна. Растворимость С в у-Ре значительно превышает максимальную растворимость С в а-Ре, что используется при термической и химикотермической обработке стали.  [c.58]

Отпуск — это процесс термической обработки, связанный с изменением строения и свойств закаленной стали при нагреве ниже критических температур. При отпуске происходит распад мартенсита (пересыщенного твердого раствора С в а-Ре после закалки) и остаточного аустенита. Вследствие перехода к более устойчивому состоянию образуются структуры продуктов распада УИ и Л, смеси а-Ре и карбидов. При этом повышаются пластичность и вязкость, снижается твердость и уменьшаются остаточные напряжения в стали.  [c.107]

Жаропрочность сталей и сплавов, характеризуемая и о , зависит от природы и свойств твердого раствора основы температур плавления, рекристаллизации и атомных связей, соответствующих определенному типу кристаллической решетки основы легирующих элементов термической обработки величины зерна и характера обработки поверхности деталей.  [c.201]

Высокая прочность межатомной связи в кристаллах твердого раствора и второй выделяющейся фазы является необходимым условием высокого температурного уровня структурного разупрочнения сплава. Взаимодействие между обеими фазами также является важным фактором, влияющим на процесс коагуляции выделяющейся фазы, т.е. на процесс разупрочнения сплава при высоких температурах. Следовательно, при создании высокожаропрочных сплавов надо иметь в виду не только свойства кристаллов основного твердого раствора и выделяющейся фазы, но и термодинамические условия взаимодействия между ними. Важное значение для повышения жаропрочности сплавов имеет литая гетерогенная структура, возникающая при кристаллизации отливки в виде скелета или сетки. Существенным при этом является высокая термическая стабильность избыточной фазы в сплаве.  [c.48]

Упрочнение металла при наклепе объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, междоузельных атомов), а также торможением дислокаций в связи с измельчением блоков и зерен, искажением кристаллической решетки В результате наклепа образуется текстура, обладающая значительной анизотропией свойств В некоторых случаях наклеп является единственным способом упрочнения металлов и сплавов, которые не упрочняются термической обработкой, например, чистые металлы, однофазные сплавы твердых растворов.  [c.26]

Электромагнитные свойства сталей определяются содержанием углерода, видом и режимом термической обработки, значениями внутренних напряжений, характером механической обработки и другими факторами. Уд ель-ная электрическая проводимость и магнитная проницаемость стали тем меньше, чем выше в ней содержание углерода и чем больше углерода при закалке перешло в твердый раствор.  [c.152]

Температура, при которой осуществляется термическая обработка, имеет большое влияние на магнитные свойства покрытия Образцы, покрытые как в кислом, так и в щелочном растворе, помешали в печь, где выдерживали при заданной температуре и в условиях вакуума (7-10 Па) в течение 1 ч После охлаждения и замера магнитных характеристик образцы вновь загружали в печь и повторно прогревали в течение 1 ч с повышением температуры на 25—50 С, чтобы выявить взаимосвязь между магнитными свойствами покрытий, фазовыми и структурными превращениями в них Результаты испытаний приведены в табл 7  [c.19]


Одно из основных достоинств модели Ли [54, 1031 заключается в новой интерпретации коэффициента/(у, который оказывается пропорциональным квадратному корню из плотности выступов на границе. Эта величина представляется, конечно, более предпочтительной для теоретического рассмотрения по сравнению с мало конкретным понятием прочности границы, определяющей Ку в теориях скоплений. Поскольку, как считает Ли 154, 103], выступ является абсорбированной дислокацией, то он сохраняет ее свойство взаимодействовать е растворенными атомами, понижая при этом свою энергию. Таким образом, открывается возможность анализа зависимости Ку от концентрации твердого раствора, режимов термической обработки и условий испытания.  [c.52]

Влияние параметров деформации и внутренних напряжений на распад твердого раствора изучалось Н. К- Фоминым и автором на бинарном сплаве А1—Си (3,2%) и на промышленном сплаве В95. Количественная оценка пресс-эффекта производилась по результатам испытаний механических свойств. Характер распределения и величина деформации в слитке и прутке изучались с помощью координатной сетки. Величина внутренних напряжений оценивалась по величине средних удельных давлений на пресс-остатке. Электрическая проводимость измерялась в двух состояниях после прессования и после термической обработки.  [c.73]

Соотношение отдельных составляющих может изменяться в зависимости от требований к применению и обеспечению стойкости против коррозии под действием окружающей среды, оттенка, глянца, непрозрачности, стойкости к механическим повреждениям, резким изменениям температуры и т. д. Эмаль представляет собой тонкое защитное покрытие, обычно двухслойное, где первый слой обеспечивает адгезию, а второй — требуемые свойства, например кислотоупорность и др. В обычных атмосферных условиях срок службы эмалей составляет несколько десятков лет. Чаще всего эмалируют штампованные изделия из специальных низкоуглеродистых стальных полос, прокатанных в холодном состоянии, толщиной 0,6—1,5 мм. С учетом высоких температур отжига (более 800° С) необходимо, чтобы штамповки имели хорошо армированные утонения и т. д. Из-за различных коэффициентов термического расширения эмали и стали радиус граней должен быть более 4,5 мм, а радиус у углов — более 6 мм, чтобы предотвратить самопроизвольное отслаивание эмали. Кислотоупорные эмали отличаются исключительной стойкостью против большинства неорганических кислот, за исключением фтористоводородной и фосфорной. Для щелочных растворов эмаль непригодна. Кислотоупорная эмаль выдерживает температуру до 350° С. Хорошо эмалируются автоклавы, реакторные котлы, вакуумные аппараты, теплообменники, оборудование для дистилляции и другие аппараты химической промышленности, узлы из листовых сталей для силосных башен, трубопроводы, запорные устройства.  [c.88]

В докладе А-5 А. И. Степанова (США) и К- Кавагучи (Япония) рассматриваются термические свойства некоторых жидкостей применительно к оценке кавитации специальных насосов для перекачки расплавленного металла, холодильных растворов (смесей) и др. Рассматривается термический кавитационный критерий,  [c.113]

Двуокись олова (ЗпОг) лучший и непревзойденный глушитель для стекол и эмалей, которым она сообш,ает белоснежный вид. Двуокись олова представляет собой белый тонкий порошок, содержащий не менее 99,5—99,8% ЗпОг. Ее удельный вес равен 6,9—7,2. Лучшим размером зерен двуокиси олова считается I микрон, т. е. одна тысячная миллиметра. Под влиянием высокой температуры двуокись олова частично растворяется в эмали, причем улучшаются механические и термические свойства эмали, но степень заглушенности ее уменьшается. Растворимость двуокиси олова сильно зависит от состава эмали, причем глинозем уменьшает ее, а щелочи увеличивают. Двуокись олова не должна содержать металлическое олово. Содержание окислов свинца, сурьмы и железа допускается в пределах 0,02—0,05%.  [c.24]

О термических свойствах растворов фреон-22 — дибутилфталат, фреон-22 — дибутилсебацинат см. [216, 218]. См. также табл. 54.  [c.56]

Работой А. М. Ямпольского [4] подтверждаются высокие защитные, механические и термические свойства фосфато-окисных пленок. При испытании в 3% растворе Na l признаки коррозии на деталях, покрытых фосфато-окисной пленкой, появляются лишь через 3—4 ч, что характеризует высокую защитную способность этой пленкн но сравнению с окисной, которая в тех же условиях начинает разрушаться уже спустя 5—10 мин механическая прочность пленкн в 10—15 раз выше окисной. При 300—500 °С фосфато-окисная пленка приобретает пепельно-серый цвет. После промасливания первона-, чальный черный цвет пленки полностью восстанавливается, а также остаются неизменными пористость, высокая механическая прочность и другие свойства.  [c.119]

Именно большое количество избыточной карбидной фазы (при всех режимах термической обработки) и делает сталь высокоизносоустойчивой, Способность этих карбидов частично переходить в раствор и в тем большей степени, чем выше нагрев под закалку, позволяет, изменяя температуру закалки, изменять свойства стали и ее поведение при термической обработке.  [c.435]

Си с А1 образует ограниченные твердые растворы и химическое соединение СнА12, обладающее высокой твердостью и хрупкостью. В сложных алюминиевых сплавах Си входит в состав тройных соединений. В деформируемых алюминиевых сплавах содержание Си не превышает 7%, а в литейных — 8%. Для таких сплавов Си — основной легирующий элемент, обеспечивающий высокие механические свойства после термической обработки однако Си ухудшает антикоррозионную стойкость алюминиевых сплавов.  [c.321]

Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию.  [c.319]


Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

Сплав AJI4. Сплав широко применяется в авиамоторостроении и отличается лучшими литейными свойствами, но требует обязательного модифицирования и проведения термической обработки. Например, из сплава АЛ4 отливают головки блока двигателя внут-реннег-о сгорания (ДВС). Крупногабаритные отливки подвергают термообработке по режиму Тб закалка (в подогретой) воде с температуры 535°С и охлаждается в течение 15 ч до 17.5°С. Микроструктура модифицированного и термообработанного сплава АЛ4 состоит из зерен твердого раствора на основе алюминия и мелкозернистой эвтектики.  [c.70]

Рентгенографические методы анализа широко используются для изучения структуры, состава и свойств различных материалов. Широкому распространению рентгенофафического анализа способствовали его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто недоступных другим методам исследований. Вследствие высокой проникающей способности рентгеновских лучей для осуществления анализа не требуется создание вакуума. С помощью рентгенографического анализа исследуют качественный и количественный состав материалов (рентгенофазовый анализ), тонкую структуру кристаллических веществ - форму, размер и тип элементарной ячейки, симметрию кристалла, координаты атомов в пространстве, степень совершенства кристаллов и наличие в них микронапряжений, наличие и величину остаточных макронапряжений в материале, размер мозаичных блоков, тип твердых растворов, текстуру веп ес1в, плотность, коэффициент термического расширения, толидину покрытий и т.д.  [c.158]

Для придания необходимых физико-механических свойств в оксидную пленку могут вводиться находящиеся в электролите нерастворимые в воде в этих условиях металлы, а также мелкодисперсные тугоплавкие соединения (карбиды, бориды, нитриды) и окислы за счет электрофоретической доставки их на анод. Образование пленок происходит в локальных объемах порядка 10 см при температуре пробойного канала 2000 К и скорости охлаждения 10 - 10 градус/с. По такому принципу формируются керамические покрытия, применяемые для повышения коррозионной и термической стойкости алюминиевых деталей. Керамические покрытия пол чают из водных растворов силикатов щелочных металлов, например из 3-4-модульного силиката натрия (концентрация 0,1-0,2 М), они представляют собой шпинели AlSiOj, сформированные при анодировании в режиме искрового разряда (напряжение 350 В). Дегидратация и спекание силикатов на аноде происходят в результате искрового пробоя окисного слоя, образующегося при анодировании алюминия. При электролизе на аноде происходит разряд гидроксил-ионов I. силикатных мицелл, а также образуются окислы  [c.124]

Склонность к коррозионному растрескиванию может быть также в значительной степени снята при создании в поверхностном слое сжимающих напряжений, например, дробеструйным наклепом, поверхностной закалкой токами высокой частоты, химико-термической обработкой. Показано, что образование бе-лого> слоя на поверхности стали при механической обработке резанием значительно повышает стойкость ее к коррозионному растрескиванию, что объясняется более высокой коррозионной стойкостью этого слоя, большей гомогенностью его свойств и созданием значительных сжимающих напряжений. Работоспособность образцов с белым слоем (рис. 15), полученным точением Т-1 (J a = l,00— 1,25 мкм, толщина слоя 4—5 мкм), в кислоте повышается в 2 раза, а при точении Т-2 (/ г=10—20 мкм, толщина слоя 8—10 мкм) — в 3 раза. В кипящем растворе Mg lj образцы с меньшей шероховатостью имеют более высокую стойкость. Это свидетельствует о том, что в сильных коррозионно-активных средах микрогеометрия поверхности играет меньшую роль, чем в менее агрессивных.  [c.16]

Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания.  [c.31]

Дефектами контакторов из сплава Ag— dO при критических режимах нагрузки являются глубокие межкристал-лические разрывы, возникающие из-за термических напряжений. Такие дефекты особенно характерны для крупнокристаллической структуры. В данное время разработан новый метод получения мелкозернистого материдла на основе серебра с дисперсными равномерно распределенными включениями dO. Мелкодисперсную смесь Ag и dO получают совместным осаждением гидроокисей кадмия и серебра из раствора нитратов этих элементов. Выделившиеся порошки превращаются при нагреве в металлическое серебро и dO. В противоположность обычному порошковому методу в данном случае прессуют не готовые детали, а блоки. Блоки спекают по особому тем-пературно-временному режиму и затем горячей и холодной деформациями с общим обжатием более 95% изготовляют необходимые полуфабрикаты. Таким методом получают предельно плотную матрицу с мелкодисперсными, равномерно распределенными включениями dO. Для предотвращения образования крупнозернистой структуры в основе должно содержаться 10—15 вес. % dO. Даже после критической деформации и многочасового рекри-сталлизационного отжига при 800° С средний размер зерна основы составляет менее 10 мкм, что соответствует среднему расстоянию между частицами dO. Изделия, полученные таким методом из сплава Ag— dO, проявляют при особо критических-условиях работы значительно лучшие свойства (низкую свариваемость при высоких токах включения и равномерное обгорание).  [c.249]

Присутствие нескольких фаз в химически осажденном никеле связано с возможностью их различного распределения в осадке а распределение состава осадка зависит от услоний проведения процесса и последующей термической обработки Защитные свойства покрытий полученных химическим восстановлением из кислых растворов выше чем осадков из щелочных растворов  [c.11]


В процессе термической обработки в покрытиях протекают структурно-фазовые изменеиня, влекущие за собой изменение магнитных свойств На рис 19 представлено изменение магинтных характеристик Со—Р-покрытии различного состава от температуры отжига Увеличение магнитных характеристик в области температур 350—500 С связано с процессом распада а-твердого раствора, образования и выделения фазы фосфида Со Р  [c.60]

Во избежание явлений коррозионного растрескивания в водньрх растворах галогенидов следует, во-первых, правильно выбирать марку сплава и его конечную термическую обработку (см. выше). Во-вторых, для повышения стойкости титановых сплавов к коррозии и коррозионному растрескиванию в хлорсодержащих растворах следует применять специализированные легирующие добавки — палладий и др. [39 40, с. 127 — 130]. Добавка палладия в титановые сплавы практически не изменяет их механические свойства, но сильно смещает электродный потенциал в область пассивации. Это происходит вследствие того, что из-за низкой растворимости палладий в титане находится в виде соединений Т( —Рс1. При растворении соединений выделяющийся металлический палладий осаждается на ювенильной поверхности и пассивирует ее. Исследования  [c.41]

Остановимся на важнейшем двухкомпонентном сплаве сплаве алюминия с медью. Добавка меди к алюминию дает твердый раствор. Он насыщается при 5,77о Си. Медь определяет поведение сплава при термической обработке, его физические и технологические свойства. При большом содержании меди появляется эвтектика, состоящая из твердого раствора и химического соединения СиАЬ. На основе этого сплава разработаны различные марки дюралюминия.  [c.52]


Смотреть страницы где упоминается термин Растворы термические свойства : [c.47]    [c.598]    [c.220]    [c.382]    [c.335]    [c.336]    [c.310]    [c.76]    [c.123]    [c.185]    [c.202]    [c.102]   
Теплотехнический справочник (0) -- [ c.239 ]

Теплотехнический справочник Том 1 (1957) -- [ c.239 ]



ПОИСК



Свойства растворов

ТЕРМИЧЕСКАЯ Свойства

Термические свойства вещест растворов



© 2025 Mash-xxl.info Реклама на сайте