Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия равновесия в гомогенной системе

Общие условия равновесия в гомогенной системе  [c.188]

Рассмотрим теперь условия равновесия в гомогенной системе (смесь газов, разбавленные растворы). Происходящие в гомогенной системе превращения есть химические реакции между составляющими частями системы. Уравнение равновесия при постоянных Тир  [c.69]

Расчет химических равновесий в гомогенной среде. Гомогенной называется система, в которой отсутствуют границы раздела, делящие ее на отдельные части, и частицы всех веществ, составляющих эту систему, находятся в одинаковых условиях теплового движения. Такие системы представляют собой, например, газовые смеси или растворы.  [c.269]


В связи с этим необходимо иметь в виду, что приведенные выше следствия исходных постулатов термодинамики получены без учета ограничений на равновесия внутри системы. Если же в ней по условиям задачи между отдельными частями находят-ся полупроницаемые или непроницаемые для энергии и (или) вещества границы, т. е. имеются ограничения на возможные виды контактов внутри системы, то взаимосвязь внешних и внутренних переменных, общая вариантность равновесия и другие следствия постулатов справедливы только для гомогенных частей системы. Этим, в частности, объясняется особенность термодинамического рассмотрения гетерогенных систем. При ограниченных равновесиях в таких системах могут не существовать некоторые интенсивные свойства, характерные для однородных частей, входящих в состав системы.  [c.36]

Гетерогенная система в общем случае состоит из т фаз и т компонентов. Принимается, что в каждой из фаз имеются все компоненты. Так как фазы являются гомогенными частями рассматриваемой системы, то условия равновесия в каждой из фаз определяются выражениями (184) и (186).  [c.96]

Принципиальная возможность термодинамического описания неравновесных состояний играет важную роль при выводе условий равновесия (см. И), при обосновании и использовании методов расчета равновесий (см. 22). Однако практически количественные характеристики неравновесных состояний применяют лишь в системах гомогенных или состоящих из гомогенных частей при неравновесном химическом иля фазовом составе.  [c.37]

Рассмотрим условия устойчивости гомогенной системы относительно бесконечно малых изменений ее состояния, т. е. условия стабильного или метастабильного равновесия. Выделим для этого мысленно внутри системы некоторую ее часть, такую, чтобы масса выделенной подсистемы была существенно меньше массы оставшейся части, и попытаемся выяснить, при каких условиях обе части будут устойчивыми. Это гарантирует, очевидно, и устойчивость всей системы в целом. Имея в виду соотношение масс подсистем, большую часть можно рассматривать как внешнюю среду по отношению к малой части. Свойства внешней среды, как и прежде, будут отмечаться индексом Воспользуемся достаточным критерием устойчивого рав-  [c.120]

Корреляция фазовой -диаграммы с электрохимическими характеристиками сплава частично обсуждалась в разд. 1.3. Имеется однозначная -аналитическая связь (il.)12) между химическими потенциалами компонентов А и В в сплаве и, соответствующими обратимыми электродными потенциалами по каждому из компонентов, т. е. обратимыми потенциалами реакций (1.6) и (1.7), причем термодинамическое равновесие в системе сплав — раствор электролита имеет место в случае л = Ев=Еа,в-сплав-Это условие сохраняет силу независимо от того, какая интерметаллическая систем.а подразумевается — гомогенная или гетерогенная, так как обратимые потенциалы реакций (1.6) и (1.7) для каждой из равновесно сосуществующих фаз одни и те же. Таким образом, каждой фазовой диаграмме может быть поставлена в соответствие зависимость обратимого потенциала от состава системы.  [c.142]


Гомогенные, физически различные и механически отделимые части системы называются фазами. Лед, вода и пар — три фазы одного и того же вещества— воды. Газообразная фаза, всегда однородная в условиях равновесия, может быть в системе только одна, поскольку газы смешиваются друг с другом в любом отношении. Жидких фаз может быть несколько, если для данной системы характерно расслаивание. В галургии этот случай встречается редко, так как жидкой фазой является однородный раствор. Однако при извлечении какого-либо компонента водно-солевого раствора экстракцией органическим реагентом образуется гетерогенная система из двух жидких фаз.  [c.38]

Гомогенной системой называется однородная система. каждой точке которой в условиях равновесия соответствуют одинаковые значения давления р, температуры Т и концентрации С. К гомогенным системам относятся все индивидуальные однородные вещества (вода, спирт, кристаллы соли и др.), смеси разных газов, когда последние смешиваются в любых пропорциях, жидкие и твердые растворы в случае полного взаимного смешения их составных частей.  [c.180]

Гомогенная часть гетерогенной системы, отделенная от других частей поверхностью раздела, на которой скачком изменяются какие-либо свойства (и соответствующие им параметры), называется фазой. Если система состоит из жидкости и пара, то жидкость представляет собой одну фазу, пар — другую. Нельзя путать и отождествлять агрегатные состояния с фазами. В то время как агрегатных состояний всего четыре — твердое, жидкое, газообразное и плазменное, фаз — неограниченное число даже у одного и того же химически чистого вещества в твердом агрегатном состоянии может быть несколько фаз (ромбическая и моноклинная сера, серое и белое олово и др.). При небольших дав-.лениях, когда газы мало отличаются от идеальных, в газообразном состоянии может быть только одна фаза, так как при таких условиях все газы обладают способностью смешиваться друг с другом в любых пропорциях, образуя однородную систему. В жидком состоянии в равновесии может находиться несколько фаз, например вода и масло, керосин и вода и др.  [c.20]

Чистое вещество может находиться в различных агрегатных состояниях (твердом, жидком или газообразном). Кроме того, в твердом (кристаллическом) состоянии вещество может иметь различную кристаллическую структуру, причем различные структурные состояния, называемые аллотропическими модификациями, обладают при одинаковых давлении и температуре различными термодинамическими свойствами. При определенных условиях различные агрегатные состояния чистого вещества и различные его аллотропические модификации могут сосуществовать друг с другом в равновесии, образуя единую термодинамическую систему. Как уже отмечалось, эта система является гетерогенной, причем отдельные ее гомогенные части представляют собой фазы. Система, содержащая две и более фазы, называется многофазной. В настоящей главе будут рассмотрены термодинамические свойства многофазных систем, состоящих из одного чистого вещества. Вначале будут рассмотрены случаи равновесия между двумя фазами.  [c.23]

Все реакции и соотношения, относящиеся к химическому равновесию, рассматривались здесь применительно к гомогенным газовым системам. Условия термодинамического равновесия гетерогенной системы с одним компонентом рассматривались в 12. Большое практическое значение имеют многокомпонентные гетерогенные системы, для которых условия термодинамического равновесия устанавливаются с помощью правила фаз Гиббса. Это правило позволяет определить число произвольно изменяемых параметров (число степеней свободы), исходя из числа компонентов и числа фаз в системе. Число компонентов равно числу химически индивидуальных веществ минус число химических реакций между ними. Определение фазы было дано в 12 при невысоких давлениях возможна лишь одна газовая фаза в системе, но количество твердых и жидких фаз не ограничивается существует, например, несколько кристаллических модификаций твердых тел (льда, серы, железа), в системе могут быть несмешивающиеся жидкости, каждая из которых является фазой.  [c.258]


Общим условием равновесия в любой системе (гомогенной или гетерогенной) при условии Г = onst и р = onst является постоянство термодинамического потенциала G, который представляет собой сумму термодинамических потенциалов всех веществ, входящих в нее в соответствующих числах молей. Таким образом, изменение термодинамического потенциала в системе при равновесии  [c.205]

Во-вторых, ограничения пригодны только для таких изменений состояния системы, при которых меняются интенсивные свойства фаз, так как иначе частные производные сопряженных переменных либо тождественно равняются нулю, как, например, (dPjdV)T при равновесии жидкость—пар в однокомпо-нентной системе, либо не существуют (бесконечны), как, например, Ср при температуре плавления индивидуального вещества. В гомогенных системах такие процессы также должны учитываться, что делалось выше при выборе и обосновании знака неравенства (12.29), но они, как нетрудно заметить, не влияют на ограничения (13.9) — (13.11) и другие, которые получаются из (12.29) при условии постоянства хотя бы одной из термодинамических координат системы. Этим исключается влияние процессов, единственным результатом которых было бы изменение массы системы. Так, неравенства (13.9) — (13.11), (13.21) относятся к закрытым системам и для их вывода важно знать значение не полного определителя формы (12.29), а его главных миноров. Последние должны быть определены положительно в термодинамически устойчивой системе (см. примечание на с. 123).  [c.128]

Применение микроокошческого исследования для определения поверхности вторичного выделения возможно при условии, что сплавы не являются слишком летучими или химически активными их структуры, суш ествующие при высокой температуре, не должны маскироваться изменениями, происходящими при закалке или во время быстрого охлаждения. Если эти условия удовлетворяются, то исследование заключается в закалке или быстром охлаждении сплава после отжига. Отжиг должен обеспечивать равновесие, и его нужно проводить при последовательно повышающихся температурах. Отметим, что продолжительность отжига в такого рода работе может быть гораздо длительнее, чем продолжительность отжига, необходимая при определении точек солидус в бинарной системе. Как объяснялось в главе 19, если гомогенный сплав нагревается немного выше точки плавления обычно в течение получаса, то при этом образуется жидкость в количестве, которое может быть обнаружено микроанализом. С другой стрроны, если нагревается тройной сплав, состоящий из жидкости, а также твердых фаз А и В, то это часто приводит к образованию грубой структу1ры, которая может потребовать длительного отжига для того, чтобы стать двухфазной типа (жидкость + Л). Когда относительное количество жидкости у поверхности вторичного выделения достаточно велико, при кристаллизации возможна сегрегация кристаллов, и в таком случае микроскопический метод оказывается бесполезным.  [c.373]

Системы образуются компонентами, которые, взаимодействуя друг с другом, образуют фазы, составляющие систему. Фазой является часть системы (или совокупность нескольких таких частей), однородная по химическому составу, строению и свойствам, которые не зависят от массы фазы. Фазу можно механически отделить от других частей системы, в которой она находится. Отделение возможно благодаря существованию межфаз-ных поверхностей. В зависимости от условий фазы могут находиться в твердом, жидком и газообразном состоянии. Так как газы смешиваются друг с другом в любых соотношениях, при равновесии в системе может находиться единственная газовая фаза, а соприкасающихся твердых и жидких фаз может быть несколько. Системы, состоящие из одной фазы, являются гомогенными, из нескольких фаз -гетерогенными.  [c.15]

Фазой называют однородную часть системы, имеющую одинаковый состав, одно и то же агрегатное состояние и отделенную от остальных частей системы поверхностью раздела, при переходе через которую химический состав или структура вещества изменяются скачкообразно. Совокупность фаз, находящихся в равновесии при определенных внешних условиях (давлении, температуре), называют системой. Например, однородная жидкость (расплавленный металл) является однофазной системой, при кристаллизации чистого металла система состоит из двух фаз жидкой (расплавленный металл) и твердой (зерна закристаллизовавшегося металла). Другой пример механическая смесь двух видов кристаллов образует двухфазную систему, так как каждый кристалл отличен по составу или строению и отделен один от другого поверхностью раздела. Сплав называют однородным (гомогенным), если его структура однофазна, и разнородным (гетерогенным), если его структура состоит из нескольких фаз. Под структуройсшжа понимают видимое в микроскоп взаимное расположение фаз, их форму и размеры.  [c.24]

Наибольший интерес для практики представляет анализ условий насыщения расплава магнетитом и в сложных системах шпинелями на его основе. Образование гетерогенного по магнетиту шлака является значительным нарушением технологического процесса. Следует учитывать величину Ро , при которой происходит выделение магнетита в виде самостоятельной фазы и содержание трехвалецтного железа в расплаве, отвечающее насыщению шлака магнетитом. Магнетит РедО X представляет собой нестехиометрическую фазу с узкой областью гомогенности X < 0,01 при 1523 К. Величина Ро изменяется в зависимости от стехиометрии на 5 порядков. При этом активность РедО , рассчитанная на стехиометрическую формулу, остается постоянной [21]. Система Ре - О - 810 2 имеет в области фазовых равновесий газ -жидкий шлак - Ред0 (18) две степени свободы. Поэтому при постоянной температуре (один параметр), величина Ро зависит еще от какого-то одного параметра системы. Рассмотрим зависимость о от содержания 8Ю 2 в шлаке. Из-за равновесия 3(РеО) + 1/2 О 2 =Рез04, величина  [c.49]


Смотреть страницы где упоминается термин Условия равновесия в гомогенной системе : [c.69]    [c.186]    [c.178]    [c.212]    [c.294]    [c.180]    [c.138]    [c.204]    [c.556]    [c.18]    [c.282]   
Смотреть главы в:

Газовая динамика  -> Условия равновесия в гомогенной системе



ПОИСК



Гомогенное равновесие

Гомогенность

Равновесие в гомогенных системах

Равновесие системы тел

Равновесие условие равновесия

Система гомогенная

Условие равновесия системы пар

Условия равновесия



© 2025 Mash-xxl.info Реклама на сайте