Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислородная резка — Применение металлов

Установлено также, что металл, подвергнутый холодному фосфатированию, и покрытый слоем олифы или этинолевой краски, хорошо поддается кислородной резке. Олифа или краска при этом полностью сгорает на участке шириной 15—35 мм. Указывается, что фосфатированная сталь поддается кислородной резке с применением ацетиленового, пропан-бутанового и бензинового подогревающего пламени лучше, чем очищенный, но не защищенный металл.  [c.240]


Первые две операции могут быть выполнены как механическими способами (на гильотинных ножницах, пресс-ножницах, кромкострогальных станках и т. д.), так и кислородной резкой. Рекомендуется применять механизированную кислородную резку. При применении ручной резки иногда требуется дополнительно зачищать кромки пневматическим зубилом или абразивными кругами, устраняя неровности реза, наплывы шлака и металла.  [c.55]

Самым распространенным методом термической резки металлов является кислородная резка. Этот метод еще долгое время сохранит свое значение благодаря простоте и эффективности процесса. Возможности его далеко не исчерпаны. Об этом свидетельствует достигнутый за последние годы прогресс в этой области. В частности, разработка новых способов кислородной резки (смыв-процессом и кислородом высокого давления) открыла большие перспективы для повышения скорости и качества резки в металлообработке и металлургии. Развитие новых приемов и техники кислородной резки с применением сопутствующего или предварительного газопламенного нагрева обрабатываемого металла оказалось весьма эффективным при резке различных конструкционных, в том числе высокопрочных сталей, склонных к образованию трещин или разупрочнению металла у поверхности реза. Совершенствование газодинамических характеристик режущей кислородной струи и рациональное распределение теплоты подогревающего пламени  [c.241]

Высококачественная скоростная кислородная резка (смыв-процесс) позволяет увеличить и скорость (в 1,5—2,5 раза), и качество резки. Первое достигается за счет острого гла наклона резака—25 , второе — применением специальных мундштуков, имеющих три отверстия для режущего кислорода, расположенных по углам равнобедренного треугольника. Впереди перемещается основная режущая струя, которая осуществляет резку металла на всю толщину. Две другие струи, расположенные по бокам и сзади основной, защищают горячие кромки, образованные основной струей. Недостатком способа с острым углом атаки является невозможность фигурных резон и большая ширина реза.  [c.104]

Кислородная резка основана на сгорании нагретого металла в струе режущего кислорода. Резка применяется в основном для сталей, содержащих до 0,7 %С. Производительность кислородной резки довольно велика, особенно в случае применения автоматов с несколькими резаками, работающими одновременно. Качество реза удовлетворительное, точность по длине не велика. Ширина реза составляет 4...8 мм. Применяется в основном для резки крупных профилей и вырезания контурно-фасонных заготовок из листа.  [c.97]


В военное время стало очевидным, что недооценка газопламенной обработки металлов должна быть изжита. Опыт военных лет подтвердил, что прежние пути развития газопламенной обработки металлов недостаточны для удовлетворения возрастающих потребностей промышленности. Теперь возникла задача дальнейшей механизации и автоматизации разделительной кислородной резки, расширения областей ее применения, разработки новых технологических процессов — поверхностной кислородной резки, кислородно-флюсовой резки, металлизации, пламенной закалки, наплавки и т. д. Для решения этой задачи в 1945 г. решением Правительства был создан Всесоюзный научно-исследовательский институт автогенной обработки металлов (ВНИИАвтоген).  [c.122]

За последние годы, вследствие создания аппаратуры и установок, работающих на принципе использования кислорода низкого давления и высокой производительности процесса, кислородная резка металла большой толщины находит широкое применение в технологии тяжелого машиностроения как в отечественной промышленности, так и за рубежом. В частности, кислородная резка используется взамен обрезки на механических пилах, что сокращает время резки в 15—20 раз. Значительный экономический эффект кислородная резка металла большой толщины дает при вырезке заготовок длиной до 10 и весом 12 т для мощных коленчатых валов (рис. 336). Время на механическую обработку сокращается в 7—12 раз и цикл изготовления последних на 20—25 дней.  [c.563]

Химическая сварка в свою очередь делится на газовую (кислородную — ацетиленовую), термитную (алюминиевый и магниевый термит) и сварку водяным газом. К последнему виду сварки относится также резка и сварка металла, основанная на применении паров жидкого горючего (бензорезами, керосинорезами).  [c.51]

Применение кислородной резки ограничивается толщиной разрезаемого металла — при резке тонкого металла толщиной до 5 мм включительно кислородная резка в отношении чистоты поверхности резко уступает механической.  [c.233]

Широко применяется разделительная термическая резка, занимающая до 75 % объема заготовительных операций (см. гл. 17). Ручную и полуавтоматическую резку листов производят по разметке, а автоматическую - по металлическим копирам, по масштабному чертежу-копиру или на машинах с программным управлением. Часто кислородную резку, особенно машинную, сочетают со снятием фасок для разделки стыков деталей под сварку. Применение механической обработки кромок оправдано лишь в случаях образования фасок сложной формы, при обработке деталей из легированных сталей, цветных металлов и их сплавов, при обработке литых и кованых заготовок. Механическую обработку ведут на кромкострогальных или фрезерных станках.  [c.375]

Сущность процесса, классификация и области применения. Кислородная резка — один из наиболее распространенных технологических процессов термической резки — представляет собой процесс интенсивного окисления нагретого металла в определенном объеме с последующим удалением жидкого оксида струей кислорода.  [c.345]

Кислородно-флюсовая резка коррозионно-стойких сталей, чугуна и цветных металлов нашла широкое применение для резки отливок, листовой стали и труб. Основные параметры реза при разделительной кислородной резке показаны на рис. 10.10.  [c.346]

Тенденция применения кислородной резки при наиболее перспективных методах непрерывного производства металлургического передела, в частности при огневой зачистке проката, в том числе и при непрерывной разливке стали обеспечивает существенное повышение выхода годного металла.  [c.326]

В кислороде напряженность поля дуги ниже, чем в азоте, поэтому он как газ-преобразователь электрической энергии в тепловую менее эффективен. Однако вследствие активного протекания термохимических реакций при взаимодействии кислородной плазмы с металлом в процессе резки с использованием кислорода обеспечивается более высокая производительность резки (не только углеродистых, но и легированных сталей) при применении азота или воздуха. Кислород окисляет не только разрезаемый металл, он снижает стойкость катода и сопла по сравнению со стойкостью их на воздухе. Наибольший износ или разрушение этих деталей происходит в момент возникновения двойной дуги. Процесс плазменной резки с применением кислорода менее надежный и устойчивый, чем с применением воздуха.  [c.46]


Применение газовой резки. Газовая или кислородная резка металла широко применяется во всех отраслях промышленности, значительно упрощая и ускоряя технологический процесс изготовления изделий. При помощи газовой резки можно быстро резать стальной материал любой толщины. В машиностроении ею пользуются для раскроя листового материала, для вырезки от-  [c.344]

Газо-кислородная резка является самым распространенным видом обработки металлов газовым пламенем я находит широкое применение почти во всех областях металлургической и металлообрабатывающей промышленности. Ее применяют при раскрое листовой стали, при резке профильного металла, при вырезке косынок, кругов фланцев и других фасонных заготовок. Для метал-  [c.386]

Резка стали зависит от количества содержащегося в ней углерода и химического состава примесей. Хорошо протекает резка стали с содержанием углерода до 0,3 7о (низкоуглеродистые стали), свыше 0,3 % — поверхность реза закаливается, свыше 0,7 % — резка становится затруднительной. Резке подвергают стали толщиной не менее 3 мм. Кислородная резка стали толщиной 10—100 мм (средние толщины) затруднений не вызывает. Резка стали малых толщин сопровождается оплавлением кромок, короблением и значительным перегревом. Оптимальным вариантом резки стали малых толщин является резка с последовательным расположением подогревающего пламени и режущего кислорода на максимальной скорости и минимальной мощности подогревающего пламени. Мундштук резака наклоняют под углом 15—40° к поверхности реза в сторону, обратную направлению резки. Хорошие результаты дает пакетная резка, при которой листы, подготовленные к резке, складывают в пакет, стягивают приспособлениями и разрезают за один проход. Максимальная толщина одного листа не более 4—6 мм, всего пакета — не более 100 мм. При этом листы должны быть хорошо очищены и плотно прилегать друг к другу. Основные трудности резки стали толщиной 300 мм и более связаны с необходимостью прогрева нижних слоев металла, удаления шлака на большом расстоянии от реза и применения высоких давлений кислорода.  [c.220]

Газо-кислородная резка является самым распространенным видом обработки металлов газовым пламенем и находит широкое применение почти во всех  [c.471]

Металлы и сплавы, не поддающиеся нормальному процессу кислородной резки (поверхностной и разделительной), разрезаются при применении активизирующих средств. Для этого в зону резки вводят прутки из низкоуглеродистой стали или вдувают различные флюсующие смеси на основе железа. В обоих случаях выделение дополнительного количества теплоты и повышение температуры в зоне резки способствует изменению химического состава образующихся шлаков и их разжижению.  [c.265]

Разработка этого способа значительно расширила область применения газокислородной резки. С его помощью легко осуществляется разделение неподдающихся обычной кислородной резке хромистых и хромоникелевых сталей, серого чугуна, цветных металлов и их сплавов.  [c.523]

При обычной кислородной резке высоколегированных хромистых и хромоникелевых нержавеющих сталей на поверхности реза образуется пленка тугоплавких окислов хрома, имеющих температуру плавления около 2000° С и препятствующих дальнейшему окислению металлов в месте реза. Поэтому кислородная резка этих сталей требует применения особых приемов и способов.  [c.202]

Цветные металлы (медь, латунь, бронза) обладают высокой теплопроводностью и при их окислении кислородом выделяется количество тепла, недостаточное для дальнейшего развития процесса горения металла. При кислородной резке этих металлов также образуются тугоплавкие окислы, препятствующие резке. Поэтому кислородная резка бронзы и латуни возможна только с применением флюсов.  [c.204]

Высокий уровень автоматизации достигается в процессах кислородной резки металла при применении современных машин-автоматов с программным управлением. В таких процессах использование фонда машинного времени режущих автоматов достигает 90%, а производительность труда возрастает в 3—4 раза. При этом значительно облегчается труд и оздоровляются условия работы на постах кислородной резки. Один оператор может обслуживать 2—3 машины.  [c.257]

В зависимости от условий производства, оснащения завода или мастерских оборудованием, принятых методов производства, а также от объема заказа, вида и размеров конструкций одна и та же операция может выполняться разными способами, на различном оборудовании, с разной степенью точности например, механическая резка металла—по наметке и с применением упоров, кислородная резка — вручную по наметке, полуавтоматом или автоматом по шаблону и др. Издел.ия, выпускаемые в единичных экземплярах, изготовляются с помощью универсальных приспособлений.  [c.489]

Для получения пламени высокой температуры при огневой резке металла в кислороде сжигают газ или пары рабочей жидкости. В связи с этим различают следующие основные виды огневой резки, чаще всего применяемые для резки лома и отходов углеродистой и низколегированной стали керосино-кислородную (горючим для подогревательного пламени служит керосин) и газовую резку (огневую резку с применением в качестве горючего природного или коксового газа, пропан-бутановой смеси, метана, ацетилена и др.).  [c.210]

Режимы кислородно-флюсовой резки отличаются от обычной кислородной резки применением более мощного подогревающего пламени (на 15—25%) и большим расстоянием от мундштука до металла. При резке нержавеющей хромоникелевой стали толщиной до 100 мм это расстояние устанавливается равным 15—40 мм. В качестве флюса применяют также чистые железные порошки марок ВС и ВК- При резке высокотеплопроводного металла (меди и ее сплавов) необходима повышенная мощность подогревающего пламени и большие расходы кислорода и флюса (смесь железного порошка с 15—20% алюминиевого порошка и 10—15% феррофосфора).  [c.338]


Пропан-бутано-вые смеси 9.1 (22 000) 2500—2700 0.6 3,4-4,2 2,3—57,0 Те же области применения. а также напыления цинка, алюминия и других легкоплавких материалов Кислородная резка, сварка легкоплавких металлов  [c.14]

Процесс ручной кислородной резки с применением горючего газа — заменителя ацетилена не отличается от обычной ацетилено-кислородной резки. Однако в этом случае, ввиду меньшей температуры газо-кислородного пламени (2000—2500°С вместо 3100°С у ацетилена), значительно увеличивается (в 2—3 раза) время предварительного подогрева начальной точки в месте реза до температуры воспламенения металла.  [c.70]

Резаки для природного газа. Наиболее распространенным резаком является стандартный резак типа УР. Мундштуки подогревательного пламени и режуш,его кислорода этого резака расположены концентрически. Для ручной разделительной кислородной резки с применением природного и других газов—заменителей ацетилена промышленность выпускает резак РЗР. По конструкции он относится к типу инжекторных и в основном отличается от серийного ацетилено-кислородного резака УР-48 только диаметрами проходных каналов в инжекторе, смесительной камере и наружных наконечниках. Диаметр отверстия инжектора 0,95 мм, цилиндрического отверстия в смесительной камере 2,8 мм диаметры отверстий в наружных наконечниках № 1 и 2 соответственно 6 и 7 мм. Для резки металла с использованием природного газа можно применять и универсальный инжекторный резак УР-48 весом 1,6 кг, предназначенный для ручной разделительной резки стали толщиной 5—300 мм (табл. И), а также резаки типа УР-44, РР-53 и другие с некоторой модернизацией.  [c.40]

Наиболее универсальным и широко распространенным способом резки незакаливающихся сталей является газопламенная (кислородная) резка. Рентабельность применения этого способа резки ограничивается минимальной толщиной подлежащего резке металла, равной 6 мм. Кислородная резка более тонкого материала по чистоте поверхности реза уступает способам резки на механических станках. Криволинейные резы можно успешно выполнять механическим способом только по дуге окружности при толщине металла не более 8 мм. С увеличением толщины разрезаемого металла экономические и технические преимущества кислородной резки по сравнению с механической резкой повышаются, и при толщине металла более 25 мм эти преимущества кислородной резки во всех случаях становятся бесспорными.  [c.76]

Специальные машины. Одним из интересных и существенных применений кислородной резки является зачистка поверхностей блюмсов и слябов в процессе их проката. Для этого применяются специальные машины так называемой огневой зачистки , устанавливаемые в общем потоке движения болванки. Установка такой машины показана на фиг. 70 и 71. Машина изображена на фиг. 72. Она имеет два или четыре башмака 7, на которых укреплены резаки для поверхностей зачистки. Перемещение башмаков механизировано с помощью рычагов 2 и пневматических устройств управление башмаками, а также подачей кислорода и ацетилена осуществляется с отдельно стоящего пульта. Каждый резак обеспечивает выжигание на поверхности слитка канавки шириной 36 мм. Таким образом, на каждые 100 мм нужно иметь 3 резака. Давление режущего кислорода — 4 ати, расход кислорода 1 резаком— 73 M lua на резку и 5 M jua — для подогрева. Давление ацетилена — 1 ати, расход ацетилена — 4,8 M jua . Резак снимает слой металла толщиной 3 мм при скорости перемещения болванки от 20 до 40 м/мин. Обработке на данной машине подвергается нагретая болванка, имеющая температуру 950— 1100°С.  [c.343]

Таким образом, в суш,ествую-щем виде кислородная резка многослойного металла не может быть рекомендована для применения при строительстве и ремонте магистральных трубопроводов. Для успешного применения кислородной резки многослойных труб нужно обеспечить отсутствие деформации отдельных листов (замоноличивание, надежный прижим), что требует дополнительных затрат материальных средств и энергии, усложняет технологический процесс.  [c.184]

За последние годы достигнуты серьезные успехи в разработке и выпуске средств механизации процесса кислородной резки и прежде всего координатных портальных и портально-консольных машин с фотокопировальным и числовым программным управлением. Применение много-резаковых машин обеспечило значительное повышение уровня механизации газорезательных работ, повышение производительности труда в заготовительном производстве и экономию материалов. В настоящее время в ведущих отраслях промышленности, таких, как тяжелое, транспортное, энергетическое, химическое машиностроение, где перерабатывается наибольший объем металла, уровень механизации газорезательных работ составляет 70. .. 80 %.  [c.225]

Для ручной газовой (кислородной) резкя используют резаки, а для кислородно-флюсовой — установки для ручной резки. В резаке для ручной кислородной резки происходит смешение горючего газа или жидкости с кислородом, он осуществляет подогрев металла по линии реза образующимся подогревающим пламенем и подает струю кислорода в зону резки. Наибольшее применение получили ручные резаки универсального назначения для разделительной резки металла тощиной  [c.304]

Оборудование для резки в тяжелом машиностроении используется преимущественно для фигурной резки заготовок из металла толщиной менее 700 мм, мерной резки поковок и проката толстых листов, обрезки прибылей стального литья толщиной 300...2000 мм и др. Применение газовой резки металлов большой толщины позволяет сберечь десятки тысяч тонн металла. На заводах тяжелого машиностроения основная масса образующихся ме-таллоотходов — крупногабаритный лом, большая часть которюго разрезается вручную "кислородным копьем" или кислородной резкой с использованием жидкого горючего (керосина) и установок типа КЖГ. Для" кислородной резки прибылей, поковок, слитков и крупногабаритного лома в тяжелом машиностроении применяют разнообразное специализированное оборудование.  [c.318]

Практикой установлено [29], что использование кислорода чистотой ниже 97 % недопустимо, так как нарушается нормальное протекание процесса окисления и образования разреза происходит за счет расплавления металла и выдувания неокисленного железа струей кислорода. Установлено, что наиболее целесообразно и экономически оправдано применение при машинной кислородной резке кислорода чистотой не менее 99,2 %. При этом уменьшение чистоты кислорода на 1 % снижает скорость резки в среднем на 20 %.  [c.8]

Существуют резаки нескольких типов. Для ручной кислородной резки низкоуглеродистых и низколегированных сталей при подогреве металла ацетилено-кислородным пламенем применяют резак Р2А-01, а при подогреве металла пропан-бутанокислородным пламенем резак РЗП-01. Резак Р2А-01 относится к резакам средней мощности и предназначен для резки стали толщиной до 200 мм. Резак РЗП-01 имеет большую мощность и позволяет разрезать сталь толщиной до 300 мм. Ручную поверхностную кислородную резку низкоуглеродистой и низколегированной стали осуществляют резаками РПК-2-72 и РПА-2-72. Первый из них работает на коксовом или природном газе, второй — на ацетилене. Резак состоит из корпуса с наружным и внутренним мундштуками, вентилей для регулирования подачи подогревающего кислорода и горючего газа, рычага пуска режущего кислорода. Вставные резаки предназначены для применения их со сварочными горелками. Для ручной  [c.47]


В производство внедрена научно обоснованная система допусков размеров строительных металлических сварных конструкций при их изготовлении и монтаже. В дальнейшем будут развиваться экономические исследования по установлению рационального применения строительных металлических сварных конструкций. Будет разработана методика определения оптимальных решений строительных металлических сварных конструкций с использованием электронно-вычислительных машин, в том числе при разработке типовых проектов, составлении проектов производства работ и технологических процессов сварки. Научно-исследовательские институты проведут работы по созданию новых экономичных марок сталей высокой прочности, а также определению их физнко-механических свойств и свариваемости. Будут совершенствоваться сортаменты профилей с учетом внедрения сталей высокой прочности. Найдут широкое применение легированные стали, что позволит уменьшить вес строительных металлических сварных конструкций. Ручная электродуговая сварка при изготовлении и монтаже конструкций будет почти во всех случаях заменена механизированными способами сварки. Существующая в настоящее время обработка металла механическими способами (строжка, фрезеровка) и кислородная резка будут в значительной степени вытеснены плазменной резкой.  [c.15]

При кислородной резке металлов можно заменять ацетилен керосином, что очень выгодно отпадает надобность в газогенераторах и можно обходиться без сравнительно дорогостоящего карбида кальция. Установка для резки с применением керосина состоит из сварного бачка емкостью 5 л, в котором керосин находится под давлением до 3 ати, керосннореза со шлангами для керосина и кислорода, кислородного баллона.  [c.210]

Ведущим институтом по процессам и оборудованию газопламенной обработки металлов является Всесоюзный институт автогенного машиностроения (ВНИИавтогенмаш), основанный в 1944 г. им разработаны разнообразные, нашедшие широкое применение в промышленности, аппаратура и машины для газопламенной обработки. Новые конструкции машин для кислородной резки разработаны и выпускаются Одесским заводом Автогенмаш . а также рядом других организаций и предприятий.  [c.5]

Резка кислородным копьем — процесс прожигания металла или породы струей кислорода, подаваемого к месту реза по стальной трубе (копью) небольшого диаметра. При прожигании отверстий в стальную трубку, конец которой предварительно нагревают пламенем газовой горелки, подают кислород, в результате чего происходит вэс.пламенение конца трубки. Одновременно подогревают место для отверстия. Затем горящий конец копья приближают вплотную к изделию, и происходит резка, т. е, прошивка отверстия. Резка копьем находит применение при пробивке леток доменных и сталеплавильных печей, обработке крупных металлических отливок, раздел се металлического лома, пробгшке отверстий в толстых металлических или бетонных заготовках перед началом разделительной резки.  [c.304]

При кислородной резке металла особое значение имеет чистота кислорода. Применение кислорода чистотой менее 99,5% требует повышения давления, снижения скорости резки и увеличения расхода кислорода. При чистоте кислорода ниже 97% ухудшается качество обработки, кромкй получаются неровными и оплавленными, процесс резки может приостановиться.  [c.462]


Смотреть страницы где упоминается термин Кислородная резка — Применение металлов : [c.114]    [c.211]    [c.33]    [c.145]    [c.238]    [c.191]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.268 , c.276 ]



ПОИСК



I кислородные

Кислородная резка металла

Кислородная резка — Применение

Металлов Применение

Резка кислородная

Резка металлов



© 2025 Mash-xxl.info Реклама на сайте