Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематика 379 —Задачи тел — Формулы

Как уже указывалось, для решения задач кинематики надо знать закон движения точки. Если движение задано естественным способом (дана траектория н закон движения вдоль траектории), то все характеристики движения (скорость, касательное, нормальное и полное ускорение) определяются по формулам, полученным в 42—44. Этими формулами можно, конечно, пользоваться и когда движение задано другим способом.  [c.114]


Формулы (56) и (57) часто применяют при выводе различных теорем кинематики и динамики, но ими не всегда удобно пользоваться при практических подсчетах и при решении различных технических задач. Более удобные для практики формулы будут выведены в следующих параграфах.  [c.129]

Кинематика имеет также непосредственное применение в технике. Техника широко пользуется законами и формулами кинематики. Очень большое значение кинематика имеет в теории механизмов и машин (ТММ). В настоящее время кинематика является хорошо исследованной областью науки и дальнейшее ее развитие происходит преимущественно в виде применения ее к различным задачам техники.  [c.15]

Из постановки этих двух основных задач динамики непосредственно следует, что из трех переменных, входящих в формулу (2) второго закона (масса, кинематика движения, сила), задаются только две масса и кинематические уравнения движения— в первой задаче динамики, масса и сила —во второй. Это говорит о том, что второй закон Ньютона, выраженный векторной формулой (2) или аналитически системой (7), не является тождеством (определением понятия силы), а представляет собой уравнение с неизвестным вектором силы F (первая задача динамики) или вектор-радиусом r t) (вторая задача динамики).  [c.20]

Для решения задач на эту тему необходимо уметь решать задачи кинематики на определение скоростей различных точек вращающихся и движущихся плоскопараллельно тел, знать все формулы для определения кинетической энергии тел, моментов инерции тел и работы встречаемых в задачах сил.  [c.130]

Принцип перенесения в теории комплексных векторов имеет большое прикладное значение. При решении задач кинематики твердого тела с неподвижной точкой угловые скорости изображают векторами, проходящими через одну точку, и применяется алгебра свободных векторов. Если требуется решить задачу о движении свободного твердого тела, то в формулах для соответствующего сферического движения вместо векторов угловых скоростей используются винты скоростей, а вместо углов между векторами — комплексные углы между осями винтов формулы кинематики свободного твердого тела получаются переписыванием формул кинематики тела с неподвижной точкой с заменой строчных бур прописными, а затем развертыванием их. Для всякой задачи кинематики произвольно движущегося тела можно сформулировать соответствующую задачу сферического движения, искусственно введя закрепленную точку решение этой более простой задачи автоматически с помощью принципа перенесения приводит к решению основной задачи.  [c.71]


Формулы (9) и (10) дают решение прямой задачи кинематики абсолютно твердого тела определения скоростей его точек по заданным скорости полюса Fo и угловой скорости вращения тела о), что в случае этой простейшей модели движения является вполне достаточным. Однако для общего случая движения деформируемой среды представляет интерес и решение обратной задачи — определения по заданному полю скоростей (9) или (10) вектора угловой скорости со. Чтобы решить эту, играющую сейчас вспомогательную роль задачу, применим к обеим частям линейных относительно х, у, z соотношений (10) операцию пространственного дифференцирования rot [см. (III.5) и (III.10)]. Тогда, замечая, что в данный момент времени Fq, и со представляют постоянные, не зависящие от выбора положения точки М х, у, z) величины, получим аналитическим путем  [c.36]

Большинство задач кинематики решается на основании установленных законов путем вычислений по формулам. При этом используются понятия о материальной точке и абсолютно твердом теле.  [c.61]

Решение первой задачи динамики (определение сил по заданному движению). Если ускорение движущейся точки задано, то действующая сила или реакция связи сразу находится по уравнениям (1) или (5). При этом для вычисления реакции надо дополнительно знать активные силы. Когда ускорение непосредственно не задано, но известен закон движения точки, то для определения силы (или реакции) надо предварительно вычислить ускорение по формулам кинематики (см. 64, 67).  [c.247]

При изучении кинематики специальной теории относительности наибольшие затруднения у студентов вызывают задачи, связанные с понятием относительности одновременности двух событий в разных инерциальных системах отсчета. При поверхностном рассуждении возникает противоречие — парадокс, который, однако, удается разрешить, если провести рассуждения строго по формулам специальной теории относительности.  [c.31]

Указания. Задача KI относится к кинематике точки и решается с помощью формул, но которым определяются скорость н ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются каса-тельное и нормальное ускорения точки.  [c.32]

Чтобы в процессе решения задач глубже проанализировать кинематику планетарных передач, целесообразно не пользоваться готовыми выведенными в учебниках формулами, а применять метод сложения двух движений.  [c.235]

При изложении обращается внимание на основные понятия механики, на модели реальных тел и реального физического пространства. Подробно освещается качественное исследование движения. Приводится много примеров и дается решение ряда задач. Изложение некоторых разделов отличается от обычного кинематика абсолютного твердого тела строится на основе кинематики сплошной среды, формулы канонического преобразования выводятся из второй формы принципа Гамильтона с измененными краевыми условиями и т. п. Впервые указана магнитно-кинематическая аналогия.  [c.2]

Примеры. При решении задач кинематики точки Необходимо, как правило, вначале устанорить по данным задачи закон, которым определяется рассматриваемое движение. После этого все искомые характеристики движения находятся по формулам, полученным в этом параграфе.  [c.60]

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс Чистой кинематики . С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.  [c.56]


В V главе рассматриваются конечные перемещения твердого тела в пространстве, показано сложение и разложение конечных поворотов, а также решение ряда кинематических задач с применением принципа перенесения. Изложена разработанная автором теория определения положений пространственных механизмов, дано исследование механизмов с избыточными связями и показаны конкретные приложения. Заметим, что авторы работ по винтовому исчислению не использовали в явном виде принцип перенесения как метод общего подхода к пространственным задачам. Принцип перенесения, как правило, выявлялся индуктивным путем — винтовые формулы выводились в каждом, отдельном случае и затем, а posteriori, демонстрировалось их сходство с векторными, принцип же как таковой не использовался для вывода винтовых формул. А между тем, этот принцип приводит к эффективному методу решения пространственных задач, связанных с движением твердого тела, и позволяет заранее предвидеть качественный результат. Выясняется полная аналогия теорем и формул кинематики сферического движения с теоремами и формулами кинематики произвольного движения, если перейти от вещественных переменных к комплексным. Хорошо известна аналогия (хотя бы качественная) между кинематикой сферического движения и кинематикой плоского движения, ибо сферические движения в малом являются плоскими, а в большом могут быть отображены на плоскость с сохранением качественных и некоторых количественных соотношений. Отсюда следует, что любая теорема плоской кинематики имеет свой аналог в пространстве (с соответствующей заменой геометрических элементов). На основании этого соображения возникает, например, пространственное обобщение известной формулы и теоремы Эй-лера-Савари, пространственное обобщение задачи Бурместера о построении четырехзвенного механизма по пяти заданным положениям звена и др.  [c.9]

Изменение параметров технического состояния машин в ряде случаев сопровождается увеличением уровня колебательной энергии (Ниже, когда иет необходимости различать механизм, машину и агрегат, для простоты их будем называть машиной). Для машин, уровень шума которых имеет существенное значение, превышение определенного уровня вибрации или излучаемой акустической энергии можно считать отказом по виброакустическим показателям В этом случае первой задачей вибро-акустической диагностики машин является локализация источников повышенной виброактивности. Она позволяет определить относительную роль каждого источника в создании общей вибрации. На ее основе строят математическую модель механизма и устанавливают особенности кинематики рабочего узла или протекающего в нем процесса, приводящ,ие к возникновению повышенной вибрации Источник вибрации может быть протяженным (например, многоопорныи ротор) Тогда возникает необходимость дополнительного исследования пространственного распределения динамических сил и кинематических возбуждений, возникающих в данном узле. Наиболее распространенными способами выявления и локализации источииков является сравнение вибрационных образов (во временной и частотной областях) машины в целом и отдельных ее узлов Когда виброакустические образы нескольких источников подобны, полезно анализировать потоки колебательной энергии через различные сечения механизмов, динамические силы, действующие в различных сочленениях, а также статистические характеристики процессов (функции корреляции, взаимные спектры, модуляционные характеристики и т д,). В связи с тем. что силовые и кинематические возбуждения в узлах н вибрация машины в целом зависят не только от интеисивности рабочих процессов, но и от динамических характеристик конструкций, для выявления причин повышенной вибрации следует измерять механический импеданс и подвижность различных узлов — статорных и опорных узлов механизмов, машин, агрегатов, а также фундаментных конструкций Способы выявления источников повышенной виброактивности механизмов. Наиболее распространенный способ выявления — сопоставление частот дискретных составляющих измеренного спектра вибрации с расчетными частотами возбуждений, действующих в рабочих узлах механизмов В табл. 1 пре ставлены сводные формулы частот дискретных составляющих вибрации и возбуждающих сил некото рых механизмов. Спектры вибрации измеряют на нескольких скоростных режимах работы механизма, что позволяет более надежно сопоставить расчетные частоты с реальным частотным спектром вибрации Кривые зависимости уровней конкретных дискретных составляющих вибрации от режима работы механизма дают возможность выявить резонансные зоны.  [c.413]

Б.В.Кучеряеву принадлежит более 170 печатных работ в области механики пластически деформируемых металлов, большая часть которых посвящена математическим моделям процессов ОМД. В его трудах разработаны теоретические основы механики пластически деформируемых композитных сред, предложена изопериметрическая постановка вариационных задач теории пластичности, используется суперпозиция гармонических течений, получен ряд формул в кинематике и статике сплошных сред, имеюпщх важное фундаментальное и прикладное значение.  [c.319]

Решение задач. Как уже указывалось, для решения задач кинематики надо внать закон движения точки. Если движение задано естественным способом (дана траектория и закон движения вдоль траектории), то все характеристики движения (скорость, касательное, нормальное и полное ускорения) определяются по формулам, полученным в 66—68. Касательное и нормальное ускорения точки можно найти и в случае, когда движение задано координатным способом, т. е. уравнениями (3) или (4). Для этого по формулам (15)—(18) вычисляем v и w. Беря производную по времени от  [c.162]


II, формула (15)), если предгарительно определена скорость потока в каждой точке. Как видим, эта практическая задача ставит перед кинематикой жидкости вопрос об определении скорости в той или иной точке пространства вне зависимости от индивидуальности частиц, которые через эту точку проходят. Траектории же частиц здесь вообще не нужны. Этим практическим запросам отвечает метод Эйлера, который в том как раз и заключается, что фиксируется не частица (как в методе Лагранжа), а точка в пространстве с координатами х, у, г, и исследуется изменение скорости в этой точке с течением времени. Конечно, при этом через рассматриваемую точку проходят разные частицы ).  [c.115]

Зачастую возникает и другая задача, связанная с кинематикой ядерных взаимодействий — задача перевода значений углов вылета, энергий частиц и эффективных сечений процессов из Л-системы в Ц-систему, для которой обычно выводятся все теоретические формулы вида угловых распределений. Иногда ставится и обратная задача — переход от Ц-системы к Л-системе. Обе эти задачи могут быть решены до конца только в случае, когда в рассматриваемом процессе образуются две частицы. При возникновении трех или большего числа частиц, можно получить, как это показано ниже, лишь некоторые экстремальные соотношения для предельных случаев, связанных с различными дополнительными предположениями. Эти предельные случаи сводятся, по сути дела, к различным вариантам замены одноактного образования многих частиц несколькими актами, в каждом из которых образуется по две частицы.  [c.29]


Смотреть страницы где упоминается термин Кинематика 379 —Задачи тел — Формулы : [c.160]    [c.286]    [c.5]    [c.427]    [c.9]    [c.87]    [c.2]    [c.349]    [c.59]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.386 ]



ПОИСК



Кинематика

Кинематика 379 —Задачи прямолинейного движения точки Формулы

Кинематика ее задачи



© 2025 Mash-xxl.info Реклама на сайте