Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Надрезы — Влияние на концентрацию напряжений

Надрезы — Влияние на концентрацию напряжений 384, 391  [c.989]

Проиллюстрируем влияние концентраторов напряжений на длительную прочность материалов на примере одного концентратора— кольцевого надреза (рис. 57). Величина концентрации напряжения характеризуется коэффициентом концентрации Kf Испытания [74 ] показали, что в основном влияние этого концентратора для всех сплавов в качественном отношении одинаково с увеличением коэффициента концентрации длительная прочность сначала увеличивается, а затем уменьшается (рис. 58).  [c.123]


Влияние концентрации напряжений на прочность и ударную вязкость материала 291. Испытания на растяжение проводились на образцах с двусторонним надрезом радиусом 0,45 мм. Отношение предела прочности (ов) образца без надреза к условному пределу прочности (а ) образца, имеющего надрез, выражается эффективным коэффициентом концентрации напряжений Ка-  [c.183]

Влияние отверстия и надреза на неравномерность распределения продольных l и поперечных 02 напряжений в поперечном сечении растягиваемого плоского образца представлено на рис. 13.3, а. При этом с уменьшением радиуса дна надреза R и профиля угла надреза а местные напряжения в зоне надреза возрастают, происходит их концентрация, оказывающая существенное влияние на снижение прочности детали. При изгибе и кручении влияние подобных факторов представлено на рис. 13.3, б.  [c.248]

В подавляющем большинстве случаев появление трещин в деталях и их поломка в условиях эксплуатации машин происходят в местах надрезов, обусловливающих концентрацию напряжений, оказывающих существенное влияние на прочность деталей (рис. 13.3).  [c.250]

Принято считать, что максимальная чувствительность к концентрации напряжений наблюдается для сталей с твердостью НВ 300— 400. На оценку чувствительности к концентрации напряжений большое влияние оказывает способ изготовления надреза.  [c.124]

Для полых образцов расчет аналогичной характеристики является более сложным, так как следует учитывать раздельное или одновременное влияние двух факторов продольного отверстия и надреза, поскольку каждый из них оказывает влияние на напряженное состояние полого образца. В связи с этим для полых образцов используют несколько разновидностей эффективных коэффициентов концентрации напряжений  [c.135]

Эффективный коэффициент концентрации напряжений полых образцов, характеризующий влияние продольного отверстия на величину предела выносливости полых образцов с надрезом  [c.135]

На основании этой теории удалось объяснить явление тренировки металла при напряжениях, близких к пределу усталости, показать связь между величинами пределов усталости при растяжении, сжатии, изгибе и кручении, установить зависимость между пределом усталости при одноосном нагружении и сложном напряжении, а также в условиях асимметричного цикла, вывести зависимость между пределом усталости гладких образцов и образцов с надрезом и объяснить природу влияния концентрации напряжения.  [c.52]


В более поздних работах было также показано, что резкие концентраторы напряжений придают образцам значительно более высокое сопротивление усталости, чем этого можно было ожидать, принимая во внимание их теоретические коэффициенты концентрации напряжений. Причем этот эффект наблюдается независимо от схемы приложения нагрузки. В качестве примера в табл. 1 приведены результаты исследования влияния радиуса при вершине кольцевого надреза на сопротивление усталости двух алюминиевых сплавов. Испытывали на изгиб с вращением образцы диаметром 12,7 мм из алюминиевого сплава (4,5 % Си 1,4 % Мп ап = 470 МПа) с кольцевым надрезом глубиной 1,9 мм и углом раскрытия 45°, а также на осевое растяжение-сжатие образцы диаметром 43,2 мм из алюминиевого сплава (4,4 % Си 0,7 % Mg Ств = 505 МПа) с кольцевым надрезом глубиной 5,1 мм и углом раскрытия 55 ".. В обоих случаях с уменьшением радиуса при вершине надреза амплитуда разрушающих напряжений цикла сначала значительно уменьшается, а затем, после достижения некоторого критического значения, заметно увеличивается. Интересно отметить, что в обоих исследованиях критический радиус при вершине надреза, соответствующий минимальной амплитуде разрушающих напряжений, оказался равным примерно 0,03 мм.  [c.11]

Влияние среднего напряжения цикла на развитие усталостных трещин исследовали также на плоских образцах из низкоуглеродистой стали (0,098 % С 0,01 % Si 0,44% Мп 0,13 /оР 0,27% S 0,04% Си 0,02 %Сг 0 = 309 МПа ах = 231 МПа t = = 69,5%). Испытывали на усталость при осевом растяжении-сжатии с частотой циклов 1000 1/мин образцы различной (от 10 до 20 мм) ширины, толщиной 4 мм с резкими концентраторами напряжений в виде двусторонних боковых надрезов. Теоретический коэффициент концентрации напряжений составлял ас = = 5. .. 7. Испытания проводили при варьировании в широких пределах среднего напряжения цикла и амплитуды напряжений. В результате исследования было установлено, что на скорость роста трещины среднее напряжение цикла оказывает значительно меньшее влияние, чем амплитуда напряжений. Вместе с тем увеличение среднего напряжения цикла в области  [c.90]

Влияние потенциала на изменение нагрузки для зарождения трещины при КР дважды отожженного сплава Т1—8 А1—1 Мо—1 V (образцы с надрезом) в растворах с концентрацией 0,6 М СК, Вг , 1 показано на рис. 16 [106]. Напряжение для зарождения трещины, или коэффициент интенсивности напряжений К, изменяется подобным образом [97, 104]. На основании представленных на рис. 16 данных очевидны следующие выводы, общие для большинства сплавов титана  [c.325]

Образцы с различными надрезами (типы IV, V, VII) применяют для определения чувствительности материала к концентрации напряжений, имеющей место в различных деталях около отверстий, резьбы, галтелей, шпоночных канавок и т. п. Влияние концентрации напряжений на величину предела усталости характеризуется эффективным коэффициентом концентрации напряжений, выражающимся формулами (для симметричного цикла)  [c.469]

Необходимо также подчеркнуть влияние надрезов на усталость пластмасс. У большинства материалов усталостная прочность снижается в месте надреза вследствие концентрации напряжений в этом месте. Это особенно относится к материалам с большой чувствительностью к надрезам, какими являются термореактивные пластмассы, не содержащие волокнистых наполнителей [21], и аморфные полимеры в области стеклообразного состояния (рис. 73) [21 и 22].  [c.62]

Большинству особых свойств, принципиально отличающихся от свойств стали, серый чугун обязан наличию графитовых включений. Графит, обладая несоизмеримо меньшей прочностью по сравнению с металлической матрицей, оказывает на металл такое же влияние как надрезы. Действие надреза (рис. 13) зависит от его глубины и геометрии, определяемой радиусом кривизны острия [3]. Теоретически коэ( ициент концентрации напряжений может быть определен по формуле  [c.65]


Наличие концентрации напряжений (надрезов) снижает предел выносливости серого чугуна тем больше, чем выше его прочность. Эффективный коэффициент концентрации напряжений серого чугуна колеблется в пределах 1,0—1,6. Влияние концентрации напряжений на предел усталости приведено в табл. 18.  [c.75]

Несколько позднее обнаружили, что различные сорта стали и других металлов обладают разной чувствительностью к надрезу. Ввиду важности этого вопроса были проведены исследования в направлении определения влияния концентрации напряжения на предел усталости.  [c.7]

Сопротивление детали паровой турбины малоцикловой термической усталости в значительной мере зависит от наличия концентраторов. Для области действия термической усталости следует говорить не о концентрации напряжений, а о концентрации деформаций. К концентраторам следует отнести не только неравномерности поверхности детали (надрезы, выточки, острые кромки, отверстия), но также неоднородность структуры и механических свойств (анизотропия), вызываемые несовершенной термической обработкой, наклепом и т. д. Ускорение образования трещин термической усталости при наличии концентраторов подтверждается многочисленными экспериментами. Так, например, мелкие неровности на поверхности деталей оказывают существенное влияние на появление трещин. При грубой шлифовке, когда высота неровностей доходит до 2,5 мкм, число циклов, вызывающее трещины, оказывается втрое меньшим, чем при более чистой обработке, когда высота неровностей равна 0,25 мкм. Большое значение имеет не только чистота поверхности, но и ориентация неровностей (рисок) относительно направления термических напряжений.  [c.23]

При комнатной температуре надрезы уменьшают предел усталости примерно в 2 раза. Однако для большинства сталей при условии отсутствия прогрессирующего охрупчивания чувствительность к концентрации напряжений с повышением температуры уменьшается. Сильное влияние оказывает поверхностное окисление и обезуглероживание стали, снижающие предел усталости. Необходимо обратить внимание на следующие характерные испытания стальные образцы, подвергаемые при комнатной температуре действию струи воды, снижают предел усталости на 16—60% это объясняется развитием местных коррозионных повреждений, которые действуют подобно надрезу, как концентраторы напряжений [12,53].  [c.443]

И В тех случаях, когда материал деталей пластичен. Степень опасности вырезов, отверстий, канавок, мест соединений и других концентраторов напряжений зависит от их относительных размеров, вида нагружения и чувствительности материала к надрезам. Некоторые примеры влияния геометрических особенностей на усталость показаны на рис. 7.29—7.32. Более подробное обсуждение концентрации напряжений содержится в гл. 12.  [c.196]

В противоположность теоретическому коэффициенту концентрации напряжений Kt коэффициент концентрации усталостных напряжений К) зависит от свойств материала, а не только от геометрических параметров и вида нагружения. Для учета влияния свойств материала вводится показатель чувствительности к надрезам д, характеризующий соотношение между действительным влиянием надреза на усталостную прочность материала и влиянием, предсказываемым лишь на основе теории упругости. Показатель чувствительности к надрезам определяется следующим образом  [c.413]

Испытания стыковых швов со снятым усилением показали, что зона термического влияния без надрезов не является сама по себе слабой под усталостными нагрузками [235]. Однако концентрация напряжений на кромке усиления шва влияет на зону термической обработки. Отсюда понятна важность определения усталости этой зоны в условиях, когда она имеет надрезы. Теоретический коэффициент концентрации напряжений, определенный фотоупругим методом, составил у кромки соединения со стыковым швом tto = 2,75 (большое усиление) и а = 3,0 (малое усиление).  [c.79]

Механические свойства. Графит создает концентрацию напряжений (действует как надрез), поэтому форма, в которой он присутствует, оказывает значительное влияние на механические характеристики. Пластинки графита, определяющие падение прочности, кроме того, сильно уменьшают несущее сечение, что также уменьшает прочность напротив, графит шаровидной формы в  [c.245]

Шероховатость поверхности влияет на прочность деталей, работающих в условиях циклической и знакопеременной нагрузок. Впадины мнкропрофиля являются своеобразными надрезами на поверхности и в значительной степени влияют на концентрацию напряжений и образование усталостных трещин. Коэффициент концентрации напряжений для поверхностей, обработанных резанием, находится в пределах 1,5—2,5. Особенно вредно наличие рисок от режущего инструмента в местах концентрации напряжений (канавки, резкие переходы в сечениях). Эти дефекты часто являются причиной поломки многих ответственных деталей. Для устранения влияния дефектов предварительной обработки приходится назначать дополнительную отделочную обработку поверхностей ответ-  [c.122]

В предыдущем изложении мы рассмотрели только испытания на растяжение цилиндрических образцов, в которых распределение напряжений было равномерным. Однако на практике при испытаниях на удар применяются образцы с надрезами и имеется налицо концентрация напряжений. Чтобы исследовать влияние неравномерного распределения напряжений на величину критической температуры, начнем со случая изгиба гладкого цилиндрического образца. Опыты на изгиб при статической нагрузке показывают, что текучесть стали начинается при более высоких напряжениях, чем в случае равномерного растяжения. Напряжение, соответствующее пределу текучести, сначала достигается в тонких слоях волокон, находящихся на наибольшем расстоянии от нейтральной оси, и образование участков текучести у этих волокон задерживается наличием смежного материала с более низким напряжением. Последующий затем рост величины предела текучести кужно рассмотреть, используя диаграмму рис. 304 приме-  [c.388]


Таким образом, при статическом нагружегии деталей из пластичных материалов концентрация напряжений практически не оказывает влияния на их прочность и не )Л1итывается при расчетах. Исключение составляют элементы с острыми надреза ш, тонкими пропилами и трещинами, в зоне располо Кения которых развитие пластических деформаций а следовательно, перераспределение и выравнива1ше напряжений невозможны такие элементы из пластичного материала разрушаются хрупко (без текучест i и образования шейки).  [c.72]

С увеличением концентрации напряжений более отчетливо проявляется влияние напрягаемых объемов и температуры на переход от вязкого состояния к хрупкому. Поэтому для определения условий перехода от вязкого к квазихрупкому или хрупкому разрушению широко используют температурные зависимости характеристик прочности и пластичности. В качестве примера на рис. 1.10 приведены результаты испытаний для малоуглеродистой стали 22К при растяжении образцов с площадью сечения f=lOOO мм . При испытаниях образцов с острыми надрезами регистрировались разрушающее напряжение Ск, сужение площади поперечного сечения ij) и максимальная деформация бтах в зоне концентрации напряжений после разрушения, измеренной методом сеток с шагом 0,1 мм. Кроме указанных характеристик на диаграмме рис. 1.10 нанесены величина Fb — доля вязкой ягтp и.члома (как хаоареристика степени  [c.17]

Оу = 5 перестает влиять на Л/ р. Это соответствует для испытанных образцов концентратору напряжений с радиусом надреза г= 0,1 мм. Причиной отсутствия влияния концентрации напряжений на Л/ р при а > 5 является то, что величина концентрации деформации в вершине надреза в этих случаях не изменяется. Изменение величины зерна и вн /тризеренной структуры мало сказывается на величине Л/ р.  [c.100]

Другой важный фактор, в значительной степени определяющий чувствительность к коррозионной среде,—наличие на поверхности образцов концентраторов напряжений. В вершинах концентраторов напряжений при малоцикловом нагружении создаются условия для образования глубоких трещин с малым раскрытием, в которых происходит подкисление внутрищелевого раствора и его глубокая деаэрация. Указанные условия препятствуют или затрудняют процесс репассивации, в результате чего процесс коррозионного разрушения активизируется. На рис. 71 показано влияние концентрации напряжений на малоцикловую долговечность сплава ВТ5-1 при Я = 0 в коррозионной среде ( ном 0,9о. ) образцов с радиусом надреза 0,01 0,1 0,5 1,2 и 6,0 мм. Во всех случаях отношение диаметра образца в надрезе г/ к диаметру вне надреза оставалось постоянным и равнялось 0,707 при г/=9 мм. Указанным радиусам соответствовал теоретический коэффициент концентрации напряжений, соответственно равный 13,5 5,2 4,2 2,8 и 2,0. По оси абсцисс на рис 71 отложена долговечность соответствующая точке пересечения кривой усталости надрезанных образцов с кривой усталости гладких образцов. Как видно из рис. 71, даже при проведении испытаний чувствительного к коррозионной среде сплава ВТ5-1 при наличии концентра-  [c.116]

Разработанная квазигетерогенная модель позволила прогнозировать распространение трещины в направлении нагружения и в поперечном направлении (устойчивое и неустойчивое). Появилась также возможность учесть зоны повреждения в области концентрации нормальных и касательных напряжений у кончика надреза. Изложены основные моменты рас-суждений, приводящих к необходимости рассмотрения этих областей. Влияние нормальных напряжений в направлении, перпендикулярном армированию, учтено в анализе путем введения эффективных касательных напряжений в плоскости армирования в критерий прочности. Кроме того, выведена модифицированная форма выражения для подсчета модуля сдвига в плоскости армирования вблизи надреза, учитывающая локальный изгиб волокон, ориентированных перпендикулярно направлению нагружения. Для анализа влияния на поведение композита дефектов поверхности и дефектов во внутренних слоях, возникающих либо в результате эксплуатации изделия, либо от начальных повреждений, использованы приближенные методы.  [c.33]

Наиболее значительным результатом, полученным при помощи сдвигового анализа, примененного к модели, предложенной Розеном и Цвебеном [2], является оценка влияния неупругости матрицы на коэффициент концентрации напряжений при растяжении однонаправленного композита с поперечным надрезом. Неупругие эффекты в матрице возникают из-за высоких касательных напряжений вблизи кончика  [c.59]

Глубина концентратора напряжений не оказывает столь заметного влияния на возникновение нераспространяющихся усталостных трещин, как, например, радиус при вершине надреза. Однако при малой глубине наблюдается аномалия этого эффекта, и нераспространяющиеся трещины не возникают даже при весьма острых концентраторах напряжений. Это было показано при исследованиях углеродистых сталей двух марок, термообработанных по различным режимам для получения контрастных механических свойств I) 0,ЗГ% С ав = 548МПа От = = 315 МПа и 2) 0.54 % С ав=1050 МПа ат=1020 МПа. Испытывали на усталость при изгибе с вращением образцы с постоянным диаметром сечения в зоне концентратора напряжений, равным 5 мм, и различной глубиной самого концентратора (от 0,005 до 0,5 мм). Концентратор имел вид кольцевого надреза, радиус при вершине которого изменяли от i,u до и,01 мм. При этом надрез имел круглый профиль при r >t и V-образный профиль с углом раскрытия 60° при rтеоретические коэффициенты концентрации и градиенты напряжений приведены в табл. 7.  [c.73]

Исследования влияния повышенных температур проводили на двух низкоуглеродистых низколегированных сталях 1 — от-оженной нри 685° С в течение 2 ч в вакууме и 2 — отожженной (При 920° С в течение 1 ч. Химический состав (%) и механические характеристики сталей (в скобках приведены значения для стали 2) 0 = 0,09(0,09) N = 0,008(0,009) Si = 0,19 (0,26) Мп = 0,38 (0,45) Р = 0,009 (0,006) 5 = 0,015(0,032) Си = = 0,12(0,09) Ni = 0,06(0,09) Сг = 0,07(0,08) А = 0,00(0,01) (7т = 296(243) МПа 0о = 4О5(369) МПа 6 = 38(34) % i 5 = = 76(73) %. Испытывали на усталость при изгибе с вращением образцы с диаметром рабочего сечения 8,0(10,0) мм гладкие и с концентратором напряжений глубиной 1,0 (0,9) мм и радиусом при вершине 0,13 (0,15) мм. Результаты исследований, приведенные в табл. 19, показывают, что наибольшим сопротивлением усталости рассматриваемые стали обладают при температуре около 375 °С, когда наиболее интенсивны процессы деформационного старения. Причем наиболее сильно эффект старения проявляется в присутствии концентрации напряжений. Увеличение предела выносливости образцов с надрезом при повышении температуры от 20 до 375 °С составляет 63%, тогда  [c.106]

При анализе закономерностей изменения пределов выносливости по трещинообразованию и разрушению от термической обработки и поверхностного наклепа необходимо учитывать следующее. Пределы выносливости материала зависят от его свойств, величины и распределения остаточных напряжений термического или механического происхождения, а также формы концентратора напряжений (наличия нераспространяющихся трещин в исходных острых надрезах). В связи с этим при сравнении пределов выносливости по трещинообразованию различных материалов, полученных на одинаковых образцах, необходимо иметь в виду следующее. Различие в пределах выносливости может быть следствием того, что для одного материала выбранный концентратор напряжения имеет закритическое значение теоретического коэффициента концентрации напряжений (аа>асткр) и в нем имеются нераспространяющиеся усталостные трещины, а для другого материала концентратор тех же размеров имеет докритическое значение этого коэффициента (ао<аокр) и в нем нет нераспространяющихся трещин. Наличие в зоне надреза остаточных сжимающих напряжений термического происхождения снижает влияние остаточных напряжений, возникающих в результате последующего поверхностного наклепа, так как возможности увеличения сопротивления усталости за счет этих напрял<ений уже в какой-то мере исчерпаны. Так, для стали 08 после закалки и старения (см. рис. 61, а) наблюдается отклонение от полученной зависимости, которое можно объяснить следующим образом. Термическая обработка приво-  [c.151]


Рис. 4. Влияние параметров надрезов, резьбы, технологических рисок и впадин шероховатости для деталей из различных материалов на концентрацию текущих напряжений, максимальных тангенциальпы.х остаточных напряжений и глубину зоны пластических деформаций при действии номинальных растягивающих напряжени с последующей разгрузкой (модель операций правки растяжением, ускоренных охлаждений после сквозных технологических нагревов и др.). Рис. 4. <a href="/info/349561">Влияние параметров</a> надрезов, резьбы, технологических рисок и впадин шероховатости для деталей из различных материалов на концентрацию текущих напряжений, максимальных тангенциальпы.х <a href="/info/6996">остаточных напряжений</a> и глубину <a href="/info/242743">зоны пластических деформаций</a> при действии номинальных растягивающих напряжени с последующей разгрузкой (модель операций правки растяжением, ускоренных охлаждений после сквозных технологических нагревов и др.).
Механические испытания при осевом растяжении проводили на поперечных образцах из сварных соединений, в сечение которых входили основной материал, зона термического влияния и зона сплавления. На этих образцах определяли предел текучести оо.г, предел прочности ств, относительное сужение яр и общее бобщ и равномерное брав относительное удлинение. Гладкие образцы имели диаметр 5,1 мм и расчетную длину 25,4 мм, причем середина расчетной длины располагалась по центру сварного шва. Прочность надрезанного образца определяли на поперечных образцах из сварных соединений с коэффициентом концентрации напряжений /С/= 10, причем надрез был расположен по центру сварного щва. Результаты испытаний сварных соединений и соответствующего основного металла при 297,77 и 4 К приведены в табл. 3.  [c.240]

Испытание образцов с надрезами при однократном нагружении. Ввиду наличия в различных деталях машин и других изделиях всевозможных канавок, вьггочек, отверстий, нарезок, галтелей, необходимых для конструктивных и эксплуатационных целей, возникла необходимость выяснить чувствительность материала к надрезам, для чего производится сопоставление результатов испытания материала в гладких образцах и образцах с надрезом. Наряду с этим определяют и абсолютные значения характеристик материала при наличии надреза в образце. В большинстве случаев налрез снижает пластичность и вязкость материала и мало влияет на прочность. Испытания производят при различных видах деформации образца (растяжение, сжатие, кручение, изгиб), различных геометрических параметрах надрезов, различных абсолютных размерах образцов все эти факторы оказывают существенное влияние на чувствительность к надрезу. Рассматривают чувствительность материала к надрезу по признаку прочности, деформации, вязкости. Наибольшее значение имеют исследования, в которых образцы доводятся до разрушения. В надрезанных образцах, в силу концентрации напряжений, пластические деформации локализуются областью надреза и характер разрушения образца, хрупкий при неинструментальном осмотре, оказывается на самом деле пластичным, что обнаруживается при микроскопическом изучении.  [c.301]

Рис. 6.29. Типичные особенности различных видов разрушения — обычное хрупкое разрушение, на изломе образуется кисточка б — разрушение, наблюдаемое у гибридных композитов у дна надреза в продольном направлении происходит разрушение в результате сдвига, а затем на некотором расстоянии от места концентрации напряжений возникает разрушение волокон в — состав упрочняюш,их волокон, в который входит стекловолокно и углеродное волокно, оказывает влияние на характер разрушения, связанный с вытягиванием волокон 1 — стекловолокно 2 — углеродное волокно 3 — пластмасса, армированная стекловолокном 4 — 40% углеродного волокна 5 — 60% углеродного волокна 6 — пластмасса, армированная углеродным волокном. Рис. 6.29. Типичные особенности <a href="/info/622417">различных видов разрушения</a> — обычное <a href="/info/1701">хрупкое разрушение</a>, на изломе образуется кисточка б — разрушение, наблюдаемое у гибридных композитов у дна надреза в продольном направлении происходит разрушение в результате сдвига, а затем на некотором расстоянии от места <a href="/info/4882">концентрации напряжений</a> возникает разрушение волокон в — состав упрочняюш,их волокон, в который входит стекловолокно и <a href="/info/39107">углеродное волокно</a>, оказывает влияние на <a href="/info/286696">характер разрушения</a>, связанный с вытягиванием волокон 1 — стекловолокно 2 — <a href="/info/39107">углеродное волокно</a> 3 — пластмасса, армированная стекловолокном 4 — 40% <a href="/info/39107">углеродного волокна</a> 5 — 60% <a href="/info/39107">углеродного волокна</a> 6 — пластмасса, армированная углеродным волокном.
Рис. 7.5. Влияние концентрации напряжений на предел прочности при статическом растяжении (а) и предел выносливости при пульсирующем растяжении (б) (2сГа)л =1(1 для полиэфирной смолы, армированной стеклотканью с атласным переплетением) /—гладкий образец 2 — образец с надрезом. Рис. 7.5. <a href="/info/262448">Влияние концентрации напряжений</a> на <a href="/info/1682">предел прочности</a> при <a href="/info/166780">статическом растяжении</a> (а) и <a href="/info/1473">предел выносливости</a> при пульсирующем растяжении (б) (2сГа)л =1(1 для <a href="/info/33625">полиэфирной смолы</a>, армированной стеклотканью с <a href="/info/63230">атласным переплетением</a>) /—<a href="/info/34407">гладкий образец</a> 2 — образец с надрезом.
Этому способствовало также изменение ранее существовавших критериев сравнительной оценки прочности чугуна и стали, когда исходили только из номинальных напряжений, не принимая во внимание местных концентраций напряжений, в ослаблении которых роль чугуна трудно переоценить. Сказанное объясняется структурным свойством чугуна (наличием внутренних надрезов), изучение которого и явилось одной из основных предпосылок для изменения традиционных критериев при сравнительной оценке чугуна и стали. То же свойство чугуна одновременно способствует более равномерному распределению напряжений в металле как при работе деталей хмашин на усталость, так и при вибрации. Кроме того, данное свойство способствует как бы эмансипации предела усталостной прочности чугуна от влияния внешних надрезов как концентраторов напряжений в неизмеримо большей степени, чем это имеет место у стали. В свете новых критериев при сравнительной оценке деталей из чугуна и стали относительно небольшое значение коэффициента удлинения чугуна при растяжении уже не может служить решающим критерием.  [c.321]

Влияние надреза (запила). Запилы, расположенные перпендикулярно к направлению растягивающего усилия, и царапины могут привести, особенно у гомогенных (не наполненных) пластиков, к заметному уменьшению ударной вязкости и прочности при изгибе. Испытание ударной вязкости образцов с надрезом показывает склонность материала к концентрации напряжений. Влияние надреза на механические свойства пластиков иллюстрируется данными табл. 40. Длина и толщина образцов  [c.309]

Для более полного представления о служебных характеристиках сплавов проверили влияние ЭШП на чувствительность к надрезу при испытаниях на длительную прочность при 700, 800, 900 и 950° С. Результаты исследования [159] показывают, что при этих температурах ЭШП повышает стойкость гладких образцов и значительно уменьшает чувствительность стали к концентрации напряжений при радиусе надреза 0,5 мм (в 2,5— 50 раз). Существенно увеличивается длительная прочность металла после ЭШП. Так, сталь ЭИ481Ш имела длительную прочность в продольных образцах 155 ч, в поперечных 136 ч, тогда как исходный электродуговой металл разрушался соответственно через 23 и 12 ч.  [c.223]

В зависимости от режима термическая обработка оказывает разное влияние на длительную прочность металла шва (п, 6). Проведение отпуска перлитных швов и стабилизации аустенитных изменяет ее в большинстве случаев сравнительно мало относительно исходного состояния ввиду стабильности субструктуры швов, созданной при сварке. В то же время длительная пластичность сварных швов в результате проведения отпуска даже такого относительно малолегированного шва, как шов типа Э-50А (электроды марки УОНИИ 13/55), может заметно повР)1шаться (рис. 54). Особенно это сказывается на чувствительности к концентрации напряжений, оцениваемой в условиях испытания образцов со спиральным надрезом (штриховая линия). Введение подогрева при сварке способствует повышению длительной пластичности, однако достигнутый при этом уровень ниже значений после отпуска. Наибольшая длительная пластичность обеспечивается проведением высокотемпературной термической обработки.  [c.89]

Практически определяют условный предел усталости, или предел ограниченной выносливости, как напряжение, при котором металл выдерживает определенное число циклов (ГОСТ 2 860—65). Предел выносливости в значительной степени зависит от наличия концентраторов напряжений отверстий, надрезов, резких изменений сечения и т. д. Значения предела выносливости могут существенно изменяться в связи с неоднородностью структуры, наличием неметаллических включений, формой н распределрнирм кярбипов и т. п. Неметаллические включения неблагоприятной формы и ориентации, вокруг которых происходит концентрация напряжений, снижают предел выносливости металла. С уменьшением размеров зерна и упрочнением границ предел выносливости повышается. На величине предела выносливости сказывается частота нагружения при этом влияние изменений частоты характеризуется значительным разнообразием для разных металлов и сплавов, интервалов частот и видов нагружения.  [c.50]


Согласно последнему исследованию Е. М. Шевандина и его сотрудников [168] влияния концентрации напряжения на усталостную прочность стали в воздухе установлено, что с увеличением остроты надреза концентратора и ростом коэффициента концентрации напряжений как при изгибе, так и при растяжении — сжатии происходит уменьшение усталостной прочности малоуглеродистой и низколегированной сталей до экстремального значения и при дальнейшем увеличении остроты надреза усталостная прочность практически не изменяется. Наименьший радиус надреза, отвечающий достижению экстремального значения усталостной прочности, может быть назван предельным. При изгибе и растяжении — сжатии для образцов сечением 30—60 мм он имеет величину около 0,3 мм (в среднем 0,2—0,5 мм).  [c.123]


Смотреть страницы где упоминается термин Надрезы — Влияние на концентрацию напряжений : [c.173]    [c.98]    [c.158]    [c.42]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.384 , c.391 ]



ПОИСК



661 —Влияние на концентрацию

Влияние Влияние надрезов

Влияние концентрации напряжени

Влияние напряжений

Концентрация напряжений

Концентрация напряжений — Влияние

Надрез

Надрез, влияние на напряжения

Напряжения Концентрация — си. Концентрация напряжений



© 2025 Mash-xxl.info Реклама на сайте