Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Надрез, влияние на напряжения

Для полых образцов расчет аналогичной характеристики является более сложным, так как следует учитывать раздельное или одновременное влияние двух факторов продольного отверстия и надреза, поскольку каждый из них оказывает влияние на напряженное состояние полого образца. В связи с этим для полых образцов используют несколько разновидностей эффективных коэффициентов концентрации напряжений  [c.135]

Надрезы — Влияние на концентрацию напряжений 384, 391  [c.989]

Вторая стадия вычислений начинается с момента наступления неустойчивости, развития затупленного надреза и заканчивается через несколько микросекунд после остановки трещины. На этой стадии рассчитывалось возникновение волн напряжений и их влияние на напряженное состояние и процесс разрушения в конце распространяющейся трещины.  [c.129]


Чтобы оценить роль толщины для резко отличных случаев сильной и умеренной концентрации напряжений, в экспериментах настоящей работы, кроме толщины, изменялась и острота надреза именно, измерения проводились на образцах как с малым, так и с большим радиусом кривизны в вершине надреза г. Одновременно приходилось менять и угол надреза а, следуя конфигурации принятой Г. Нейбером [11]. Дело в том, что для гиперболического профиля малому радиусу г принудительно соответствует малый угол а и, наоборот, при большом г велик и а. Поэтому основные результаты Г. Нейбера [11] не дают возможности исследовать в отдельности влияние на напряженное состояние угла надреза а и радиуса г. Отметим, что такое исследование представило бы значительный интерес и в последней работе Г. Нейбера [29] этому вопросу уделено внимание, однако рассмотрен лишь частный случай стержня, работающего в условиях сдвига.  [c.233]

Радиус кривизны надреза р, инициирующего разрушение при минимальных значениях Ki , связан с размерами зоны пластической деформации в месте возникновения трещины. При данном номинальном напряжении эта зона тем меньше, чем меньше радиус р. Размер этого радиуса не оказывает влияния на величину Ki , если .....  [c.54]

Влияние отверстия и надреза на неравномерность распределения продольных l и поперечных 02 напряжений в поперечном сечении растягиваемого плоского образца представлено на рис. 13.3, а. При этом с уменьшением радиуса дна надреза R и профиля угла надреза а местные напряжения в зоне надреза возрастают, происходит их концентрация, оказывающая существенное влияние на снижение прочности детали. При изгибе и кручении влияние подобных факторов представлено на рис. 13.3, б.  [c.248]

В подавляющем большинстве случаев появление трещин в деталях и их поломка в условиях эксплуатации машин происходят в местах надрезов, обусловливающих концентрацию напряжений, оказывающих существенное влияние на прочность деталей (рис. 13.3).  [c.250]

В настоящей главе рассматриваются микромеханические аспекты процесса разрушения и обсуждается их влияние на такие макроскопические свойства, как прочность, пластичность, вязкость разрушения. Удобно разделить возможные процессы разрушения на два типа в зависимости от того, определяется ли разрушение достижением условия неустойчивости материала типа условия предельных деформаций или напряжений или разрушение развивается под воздействием некоторых дискретных инициаторов разрушения, например разорванных волокон или надрезов, от которых может начаться рост вызывающей разрушение трещины.  [c.441]


В [93] сделана попытка оценить влияние неоднородности напряженного состояния. Исследование металла после испытаний на длительную прочность показало, что во всех случаях разрушения образцов с кольцевыми надрезами имели межзеренный характер с образованием пор диффузионной природы, причем наибольшая поврежденность наблюдалась в объемах металла, удаленных от вершины подреза на расстояние 0,1—0,02 Гд, где Гд — радиус наименьшего сечения в надрезе.  [c.158]

На основании этой теории удалось объяснить явление тренировки металла при напряжениях, близких к пределу усталости, показать связь между величинами пределов усталости при растяжении, сжатии, изгибе и кручении, установить зависимость между пределом усталости при одноосном нагружении и сложном напряжении, а также в условиях асимметричного цикла, вывести зависимость между пределом усталости гладких образцов и образцов с надрезом и объяснить природу влияния концентрации напряжения.  [c.52]

В более поздних работах было также показано, что резкие концентраторы напряжений придают образцам значительно более высокое сопротивление усталости, чем этого можно было ожидать, принимая во внимание их теоретические коэффициенты концентрации напряжений. Причем этот эффект наблюдается независимо от схемы приложения нагрузки. В качестве примера в табл. 1 приведены результаты исследования влияния радиуса при вершине кольцевого надреза на сопротивление усталости двух алюминиевых сплавов. Испытывали на изгиб с вращением образцы диаметром 12,7 мм из алюминиевого сплава (4,5 % Си 1,4 % Мп ап = 470 МПа) с кольцевым надрезом глубиной 1,9 мм и углом раскрытия 45°, а также на осевое растяжение-сжатие образцы диаметром 43,2 мм из алюминиевого сплава (4,4 % Си 0,7 % Mg Ств = 505 МПа) с кольцевым надрезом глубиной 5,1 мм и углом раскрытия 55 ".. В обоих случаях с уменьшением радиуса при вершине надреза амплитуда разрушающих напряжений цикла сначала значительно уменьшается, а затем, после достижения некоторого критического значения, заметно увеличивается. Интересно отметить, что в обоих исследованиях критический радиус при вершине надреза, соответствующий минимальной амплитуде разрушающих напряжений, оказался равным примерно 0,03 мм.  [c.11]

Объяснить полученный эффект можно на основании исследований распределения напряжений у вершины надреза различной глубины. Если глубина надреза велика, распределение напряжений почти полностью определяется радиусом при вершине надреза. При уменьшении глубины надреза до критической напряжения перераспределяются так, что уменьшается глубина слоя, на который распространяется влияние концентратора напряжений. Вместе с тем градиент напряжений продолжает оставаться практически неизменным.  [c.75]

Влияние среднего напряжения цикла проявляется также в изменении критического радиуса надреза, обусловливающего-возникновение нераспространяющихся усталостных трещин. Как указывалось выше, критический радиус надреза при изгибе с вращением или растяжении-сжатии по симметричному циклу нагружения можно считать постоянным, не зависящим от глубины надреза и диаметра минимального сечения. Так как критический радиус надреза соответствует равенству предельных напряжений, необходимых для возникновения трещин и для полного разрушения образца (при этом возникновение трещины определяется главным образом амплитудой напряжения, а на распространение трещины влияет максимальное растягивающее напряжение), можно предположить, что критический радиус надреза Гкр должен зависеть от среднего напряжения От. Действительно, экспериментально определенный при осевом нагружении латуни критический радиус надреза Гкр зависит от среднего напряжения цикла. Так, для средних напряжений —50,  [c.90]

Влияние среднего напряжения цикла на развитие усталостных трещин исследовали также на плоских образцах из низкоуглеродистой стали (0,098 % С 0,01 % Si 0,44% Мп 0,13 /оР 0,27% S 0,04% Си 0,02 %Сг 0 = 309 МПа ах = 231 МПа t = = 69,5%). Испытывали на усталость при осевом растяжении-сжатии с частотой циклов 1000 1/мин образцы различной (от 10 до 20 мм) ширины, толщиной 4 мм с резкими концентраторами напряжений в виде двусторонних боковых надрезов. Теоретический коэффициент концентрации напряжений составлял ас = = 5. .. 7. Испытания проводили при варьировании в широких пределах среднего напряжения цикла и амплитуды напряжений. В результате исследования было установлено, что на скорость роста трещины среднее напряжение цикла оказывает значительно меньшее влияние, чем амплитуда напряжений. Вместе с тем увеличение среднего напряжения цикла в области  [c.90]


Для оценки влияния величины концентратора напряжений на эффективность поверхностного наклепа были проведены испытания на усталость образцов из стали 45 диаметром 26 мм гладких и с концентратором напряжений глубиной 4 мм, радиусом при вершине 0,2 мм и углом при вершине 60°. Каждый образец имел по четыре надреза, расположенных на расстоянии 15 мм один от другого, что позволило применить методику исследования трещин, развивающихся в концентраторах, работающих на различных уровнях переменных напряжений. Результаты испытаний, проведенных на базе Ю циклов, приведены на рис. 63. Исходные гладкие образцы имели предел выносливости 225 МПа (кривая /). Кривые 2 и 3, соответствующие возникновению трещины и разрушению надрезанных образцов, показывают, что выбранный для исследований концентратор напряжений (а(т = 4), является закритическим, т. е. обусловливает возникновение в нем нераспространяющихся усталостных трещин. Поверхностный наклеп приводит к резкому (более чем в  [c.154]

Ответ Никаких дополнительных данных по пористости, кроме того, что отливки соответствовали стандартным требованиям радиографического контроля, в данной работе получено не было. Мы не предполагаем, что небольшая разница в пористости будет оказывать значительное влияние на прочностные свойства, определяемые на обычных гладких образцах. Однако мы допускаем, что более высокие свойства отливок, изготовленных по усовершенствованной технологии, по сравнению с литьем в песчаные формы и в кокиль в отношении чувствительности к надрезу, т. е. способности к локальной пластической деформации в присутствии концентратора напряжений, могут быть связаны с более высокой плотностью этих отливок,  [c.203]

Образцы с различными надрезами (типы IV, V, VII) применяют для определения чувствительности материала к концентрации напряжений, имеющей место в различных деталях около отверстий, резьбы, галтелей, шпоночных канавок и т. п. Влияние концентрации напряжений на величину предела усталости характеризуется эффективным коэффициентом концентрации напряжений, выражающимся формулами (для симметричного цикла)  [c.469]

Необходимо также подчеркнуть влияние надрезов на усталость пластмасс. У большинства материалов усталостная прочность снижается в месте надреза вследствие концентрации напряжений в этом месте. Это особенно относится к материалам с большой чувствительностью к надрезам, какими являются термореактивные пластмассы, не содержащие волокнистых наполнителей [21], и аморфные полимеры в области стеклообразного состояния (рис. 73) [21 и 22].  [c.62]

Серый чугун с пластинчатой формой графита мало чувствителен к концентраторам напряжений, причем чугун с малой прочностью менее чувствителен к надрезам. Снижение прочности чугуна под влиянием надрезов показано на рис. 20.  [c.69]

Наличие концентрации напряжений (надрезов) снижает предел выносливости серого чугуна тем больше, чем выше его прочность. Эффективный коэффициент концентрации напряжений серого чугуна колеблется в пределах 1,0—1,6. Влияние концентрации напряжений на предел усталости приведено в табл. 18.  [c.75]

Несколько позднее обнаружили, что различные сорта стали и других металлов обладают разной чувствительностью к надрезу. Ввиду важности этого вопроса были проведены исследования в направлении определения влияния концентрации напряжения на предел усталости.  [c.7]

Влияние концентраторов напряжений на точность ускоренных методов усталостных испытаний оценивается на шлифованных образцах с концентратором напряжений в виде кольцевого выступа с различными соотношениями диаметра и ширины концентратора, радиусного надреза с различными радиусами и V-образного надреза с различными углами профиля. Образцы испытывали на машине НУ в условиях чистого изгиба.  [c.74]

Сопротивление детали паровой турбины малоцикловой термической усталости в значительной мере зависит от наличия концентраторов. Для области действия термической усталости следует говорить не о концентрации напряжений, а о концентрации деформаций. К концентраторам следует отнести не только неравномерности поверхности детали (надрезы, выточки, острые кромки, отверстия), но также неоднородность структуры и механических свойств (анизотропия), вызываемые несовершенной термической обработкой, наклепом и т. д. Ускорение образования трещин термической усталости при наличии концентраторов подтверждается многочисленными экспериментами. Так, например, мелкие неровности на поверхности деталей оказывают существенное влияние на появление трещин. При грубой шлифовке, когда высота неровностей доходит до 2,5 мкм, число циклов, вызывающее трещины, оказывается втрое меньшим, чем при более чистой обработке, когда высота неровностей равна 0,25 мкм. Большое значение имеет не только чистота поверхности, но и ориентация неровностей (рисок) относительно направления термических напряжений.  [c.23]

При комнатной температуре надрезы уменьшают предел усталости примерно в 2 раза. Однако для большинства сталей при условии отсутствия прогрессирующего охрупчивания чувствительность к концентрации напряжений с повышением температуры уменьшается. Сильное влияние оказывает поверхностное окисление и обезуглероживание стали, снижающие предел усталости. Необходимо обратить внимание на следующие характерные испытания стальные образцы, подвергаемые при комнатной температуре действию струи воды, снижают предел усталости на 16—60% это объясняется развитием местных коррозионных повреждений, которые действуют подобно надрезу, как концентраторы напряжений [12,53].  [c.443]


На процесс разрушения при циклических нагрузках существенное влияние оказывают концентраторы напряжений. Концентраторы напряжений могут быть конструктивными (резкие переходы от сечения к сечению), технологическими (царапины, трещины, риски от резца), металлургическими (поры, раковины, неметаллические включения). Независимо от своего происхождения концентраторы напряжений в той или иной степени снижают предел выносливости при одном и том же уровне переменных напряжений. Для оценки влияния концентратора напряжений на усталость испытывают гладкие и надрезанные образцы при симметричном цикле напряжений. Надрез на образце выполняется в виде острой круговой выточки. Отношение предела выносливости, определенного на гладких образцах о , к пределу выносливости, определенному на надрезанных образцах , называют эффективным  [c.49]

Скорости в точках перед цилиндром и за ним снижаются до нуля, тогда как скорости в боковых РисГг О. точках т и п удваиваются. Следовательно, отверстие такого вида удваивает касательные напряжения в той части вала, в которой оно расположено. Малый полукруглый надрез на поверхности, параллельный оси вала (рис. 170), производит тот же эффект. Касательное напряжение на дне надреза в точке т примерно вдвое превышает напряжение на поверхности вала в точках, достаточно удаленных от надреза. Та же гидродинамическая аналогия объясняет влияние малого отверстия эллиптического сечения или полуэллиптического надреза. Если одна из главных осей а малого эллиптического отверстия расположена в радиальном направлении, а другая ось равна Ь, то напряжения на границе отверстия по концам оси а увеличиваются в пропорции (l+a/b) l. Максимальное напряжение, дей-ствуюш,ее в этом случае, зависит, таким образом, от величины отношения а/Ь. Влияние отверстия на напрял<ение будет больше, когда большая ось эллипса расположена в радиальном направлении, по сравнению со случаем, когда она расположена в окружном направлении. Поэтому радиальные трещины оказывают существенное ослабляющее влияние на прочность вала. Подобное влияние на распределение напряжений оказывает н полуэллип-тический надрез на поверхности, параллельной оси вала.  [c.333]

Таким образом, при статическом нагружегии деталей из пластичных материалов концентрация напряжений практически не оказывает влияния на их прочность и не )Л1итывается при расчетах. Исключение составляют элементы с острыми надреза ш, тонкими пропилами и трещинами, в зоне располо Кения которых развитие пластических деформаций а следовательно, перераспределение и выравнива1ше напряжений невозможны такие элементы из пластичного материала разрушаются хрупко (без текучест i и образования шейки).  [c.72]

С увеличением концентрации напряжений более отчетливо проявляется влияние напрягаемых объемов и температуры на переход от вязкого состояния к хрупкому. Поэтому для определения условий перехода от вязкого к квазихрупкому или хрупкому разрушению широко используют температурные зависимости характеристик прочности и пластичности. В качестве примера на рис. 1.10 приведены результаты испытаний для малоуглеродистой стали 22К при растяжении образцов с площадью сечения f=lOOO мм . При испытаниях образцов с острыми надрезами регистрировались разрушающее напряжение Ск, сужение площади поперечного сечения ij) и максимальная деформация бтах в зоне концентрации напряжений после разрушения, измеренной методом сеток с шагом 0,1 мм. Кроме указанных характеристик на диаграмме рис. 1.10 нанесены величина Fb — доля вязкой ягтp и.члома (как хаоареристика степени  [c.17]

Оу = 5 перестает влиять на Л/ р. Это соответствует для испытанных образцов концентратору напряжений с радиусом надреза г= 0,1 мм. Причиной отсутствия влияния концентрации напряжений на Л/ р при а > 5 является то, что величина концентрации деформации в вершине надреза в этих случаях не изменяется. Изменение величины зерна и вн /тризеренной структуры мало сказывается на величине Л/ р.  [c.100]

Другой важный фактор, в значительной степени определяющий чувствительность к коррозионной среде,—наличие на поверхности образцов концентраторов напряжений. В вершинах концентраторов напряжений при малоцикловом нагружении создаются условия для образования глубоких трещин с малым раскрытием, в которых происходит подкисление внутрищелевого раствора и его глубокая деаэрация. Указанные условия препятствуют или затрудняют процесс репассивации, в результате чего процесс коррозионного разрушения активизируется. На рис. 71 показано влияние концентрации напряжений на малоцикловую долговечность сплава ВТ5-1 при Я = 0 в коррозионной среде ( ном 0,9о. ) образцов с радиусом надреза 0,01 0,1 0,5 1,2 и 6,0 мм. Во всех случаях отношение диаметра образца в надрезе г/ к диаметру вне надреза оставалось постоянным и равнялось 0,707 при г/=9 мм. Указанным радиусам соответствовал теоретический коэффициент концентрации напряжений, соответственно равный 13,5 5,2 4,2 2,8 и 2,0. По оси абсцисс на рис 71 отложена долговечность соответствующая точке пересечения кривой усталости надрезанных образцов с кривой усталости гладких образцов. Как видно из рис. 71, даже при проведении испытаний чувствительного к коррозионной среде сплава ВТ5-1 при наличии концентра-  [c.116]

На рис. 72 показано влияние коррозионной среды на малоцикловую усталость стали и титановых сплавов. Если степень этого влияния на циклическую долговечность стали и ряда других конструкционных материалов увеличивается со снижением уровня амплитуды напряжений (с возрастанием длительности пребывания в среде), то для титановых сплавов наблюдается обратная картина чем ниже амплитуда напряжений, тем меньше влияет среда. При снижении амплитуды напряжений до уровня, при котором в вершине надреза локальные деформации не превышают 2е. —суммарная деформация, возникающая при напря-  [c.118]

Разработанная квазигетерогенная модель позволила прогнозировать распространение трещины в направлении нагружения и в поперечном направлении (устойчивое и неустойчивое). Появилась также возможность учесть зоны повреждения в области концентрации нормальных и касательных напряжений у кончика надреза. Изложены основные моменты рас-суждений, приводящих к необходимости рассмотрения этих областей. Влияние нормальных напряжений в направлении, перпендикулярном армированию, учтено в анализе путем введения эффективных касательных напряжений в плоскости армирования в критерий прочности. Кроме того, выведена модифицированная форма выражения для подсчета модуля сдвига в плоскости армирования вблизи надреза, учитывающая локальный изгиб волокон, ориентированных перпендикулярно направлению нагружения. Для анализа влияния на поведение композита дефектов поверхности и дефектов во внутренних слоях, возникающих либо в результате эксплуатации изделия, либо от начальных повреждений, использованы приближенные методы.  [c.33]

Принципы, положенные в основу модели [2], распространены Цвебеном [39] для анализа поведения слоистых композитов типа [07 0°]s с надрезом. Рассматривается только напряженное состояние в слоях, ориентированных в направлении нагружения, как воспринимающих наибольшие напряжения. Важной особенностью модели [39] является возможность оценки влияния на поведение композита слоев, ориентированных под углом к направлению нагружения (90° или 0°) и стесняющих деформации сдвига в плоскости слоя, ориентированного в направлении нагружения. В модели сдвигового анализа фигурируют два напряжения — напряжение в волокнах в направлении нагружения и касательное напряжение в матрице в плоскости армирования. Предполагалось, что слои, ориентированные под углом к направлению нагружения, приводят к появлению еще одной плоскости сдвига.  [c.60]


Наличие концентраторов напряжений в материалах, чувствительных к ним, может оказать значительное влияние на характер разрушения. Так, в штамповке из алюми-нивого сплава АК4-1Т1 разрушение в образцах с надрезом н без надреза менялось следующим образом при температуре 175°С в обоих случаях оно было полностью виутри-зеренное, более пластичное в надрезанных образцах при 250°С в изломе гладких образцов наблюдалась значительная доля межзеренного разрушения, в надрезанных образцах межзеренного разрушения значительно меньше (рис. 60). Независимо от температуры испытания (150, 175, 250°С) в образцах с надрезом локальная пластичность при разрушении была выше, чем в образцах без надреза. Малое сопротивление возникновению разрушения надрезанных образцов определило их малую долговечность (табл. 9).  [c.88]

Глубина концентратора напряжений не оказывает столь заметного влияния на возникновение нераспространяющихся усталостных трещин, как, например, радиус при вершине надреза. Однако при малой глубине наблюдается аномалия этого эффекта, и нераспространяющиеся трещины не возникают даже при весьма острых концентраторах напряжений. Это было показано при исследованиях углеродистых сталей двух марок, термообработанных по различным режимам для получения контрастных механических свойств I) 0,ЗГ% С ав = 548МПа От = = 315 МПа и 2) 0.54 % С ав=1050 МПа ат=1020 МПа. Испытывали на усталость при изгибе с вращением образцы с постоянным диаметром сечения в зоне концентратора напряжений, равным 5 мм, и различной глубиной самого концентратора (от 0,005 до 0,5 мм). Концентратор имел вид кольцевого надреза, радиус при вершине которого изменяли от i,u до и,01 мм. При этом надрез имел круглый профиль при r >t и V-образный профиль с углом раскрытия 60° при rтеоретические коэффициенты концентрации и градиенты напряжений приведены в табл. 7.  [c.73]

При анализе закономерностей изменения пределов выносливости по трещинообразованию и разрушению от термической обработки и поверхностного наклепа необходимо учитывать следующее. Пределы выносливости материала зависят от его свойств, величины и распределения остаточных напряжений термического или механического происхождения, а также формы концентратора напряжений (наличия нераспространяющихся трещин в исходных острых надрезах). В связи с этим при сравнении пределов выносливости по трещинообразованию различных материалов, полученных на одинаковых образцах, необходимо иметь в виду следующее. Различие в пределах выносливости может быть следствием того, что для одного материала выбранный концентратор напряжения имеет закритическое значение теоретического коэффициента концентрации напряжений (аа>асткр) и в нем имеются нераспространяющиеся усталостные трещины, а для другого материала концентратор тех же размеров имеет докритическое значение этого коэффициента (ао<аокр) и в нем нет нераспространяющихся трещин. Наличие в зоне надреза остаточных сжимающих напряжений термического происхождения снижает влияние остаточных напряжений, возникающих в результате последующего поверхностного наклепа, так как возможности увеличения сопротивления усталости за счет этих напрял<ений уже в какой-то мере исчерпаны. Так, для стали 08 после закалки и старения (см. рис. 61, а) наблюдается отклонение от полученной зависимости, которое можно объяснить следующим образом. Термическая обработка приво-  [c.151]

Как следует из рис. 5, расчеты долговечности, выполненные к опытам Лемана [4], в состоянии правильно учитывать влияние на долговечность последовательности и объема спектров нагрузки. Для опытов на образцах с надрезом из 8т38Ь2 был предусмотрен восьмиступенчатый нормально распределенный спектр. В основу расчета положена исходная кривая усталости с вероятностью разрушения 50 %. Установление координаты напряжения точки поворота производилось по уравнению (И). С целью упрощения для этих расчетов также было принято ов, оп,п =0.  [c.321]

Испытание образцов с надрезами при однократном нагружении. Ввиду наличия в различных деталях машин и других изделиях всевозможных канавок, вьггочек, отверстий, нарезок, галтелей, необходимых для конструктивных и эксплуатационных целей, возникла необходимость выяснить чувствительность материала к надрезам, для чего производится сопоставление результатов испытания материала в гладких образцах и образцах с надрезом. Наряду с этим определяют и абсолютные значения характеристик материала при наличии надреза в образце. В большинстве случаев налрез снижает пластичность и вязкость материала и мало влияет на прочность. Испытания производят при различных видах деформации образца (растяжение, сжатие, кручение, изгиб), различных геометрических параметрах надрезов, различных абсолютных размерах образцов все эти факторы оказывают существенное влияние на чувствительность к надрезу. Рассматривают чувствительность материала к надрезу по признаку прочности, деформации, вязкости. Наибольшее значение имеют исследования, в которых образцы доводятся до разрушения. В надрезанных образцах, в силу концентрации напряжений, пластические деформации локализуются областью надреза и характер разрушения образца, хрупкий при неинструментальном осмотре, оказывается на самом деле пластичным, что обнаруживается при микроскопическом изучении.  [c.301]

На рис. 6.19 показано влияние надреза на ударную вязкость. Из приведенных данных видно, что расположение упрочняюш,его волокна оказывает влияние на ударную вязкость [6.14]. При использовании для армирования матов можно выявить снижение ударной вязкости с возрастанием глубины надреза. Когда в качестве упрочняющего материала используют стеклоткань, характер изменения ударной вязкости зависит от направления волокна. Если основное направление волокна совпадает с основным направлением изгибающих напряжений, до глубины надреза 1 мм ударная вязкость не изменяется. Дальнейшее увеличение глубины  [c.161]

Рис. 6.29. Типичные особенности различных видов разрушения — обычное хрупкое разрушение, на изломе образуется кисточка б — разрушение, наблюдаемое у гибридных композитов у дна надреза в продольном направлении происходит разрушение в результате сдвига, а затем на некотором расстоянии от места концентрации напряжений возникает разрушение волокон в — состав упрочняюш,их волокон, в который входит стекловолокно и углеродное волокно, оказывает влияние на характер разрушения, связанный с вытягиванием волокон 1 — стекловолокно 2 — углеродное волокно 3 — пластмасса, армированная стекловолокном 4 — 40% углеродного волокна 5 — 60% углеродного волокна 6 — пластмасса, армированная углеродным волокном. Рис. 6.29. Типичные особенности <a href="/info/622417">различных видов разрушения</a> — обычное <a href="/info/1701">хрупкое разрушение</a>, на изломе образуется кисточка б — разрушение, наблюдаемое у гибридных композитов у дна надреза в продольном направлении происходит разрушение в результате сдвига, а затем на некотором расстоянии от места <a href="/info/4882">концентрации напряжений</a> возникает разрушение волокон в — состав упрочняюш,их волокон, в который входит стекловолокно и <a href="/info/39107">углеродное волокно</a>, оказывает влияние на <a href="/info/286696">характер разрушения</a>, связанный с вытягиванием волокон 1 — стекловолокно 2 — <a href="/info/39107">углеродное волокно</a> 3 — пластмасса, армированная стекловолокном 4 — 40% <a href="/info/39107">углеродного волокна</a> 5 — 60% <a href="/info/39107">углеродного волокна</a> 6 — пластмасса, армированная углеродным волокном.
Рис. 7.5. Влияние концентрации напряжений на предел прочности при статическом растяжении (а) и предел выносливости при пульсирующем растяжении (б) (2сГа)л =1(1 для полиэфирной смолы, армированной стеклотканью с атласным переплетением) /—гладкий образец 2 — образец с надрезом. Рис. 7.5. <a href="/info/262448">Влияние концентрации напряжений</a> на <a href="/info/1682">предел прочности</a> при <a href="/info/166780">статическом растяжении</a> (а) и <a href="/info/1473">предел выносливости</a> при пульсирующем растяжении (б) (2сГа)л =1(1 для <a href="/info/33625">полиэфирной смолы</a>, армированной стеклотканью с <a href="/info/63230">атласным переплетением</a>) /—<a href="/info/34407">гладкий образец</a> 2 — образец с надрезом.
Этому способствовало также изменение ранее существовавших критериев сравнительной оценки прочности чугуна и стали, когда исходили только из номинальных напряжений, не принимая во внимание местных концентраций напряжений, в ослаблении которых роль чугуна трудно переоценить. Сказанное объясняется структурным свойством чугуна (наличием внутренних надрезов), изучение которого и явилось одной из основных предпосылок для изменения традиционных критериев при сравнительной оценке чугуна и стали. То же свойство чугуна одновременно способствует более равномерному распределению напряжений в металле как при работе деталей хмашин на усталость, так и при вибрации. Кроме того, данное свойство способствует как бы эмансипации предела усталостной прочности чугуна от влияния внешних надрезов как концентраторов напряжений в неизмеримо большей степени, чем это имеет место у стали. В свете новых критериев при сравнительной оценке деталей из чугуна и стали относительно небольшое значение коэффициента удлинения чугуна при растяжении уже не может служить решающим критерием.  [c.321]


Влияние температуры на разрушение сваренных полос из углеродистой стали, содержащей 0,16—0,28 /о С, показано на рис. 61. В полосе без надреза и при отсутствии остаточных напряжений [91] разрушение происходит при весьма больших пластических деформациях на уровне предела прочности Ствр (кривая RQP). При наличии острого надреза (без остаточных напряжений) при температуре выше верхней критической t р происходит разрушение путем сдвига при достижении предела прочности при снижении температуры ниже 1кр разрушение, происходит путем отрыва на уровне напряжений предела текучести (кривая PQST). Если при этом имеются значительные остаточные напряжения, например, после сварки, то при температуре ниже t кр картина разрушений меняется. При температурах, меньших нижней критической г кр, напряжения от внешних нагрузок больше критических (линия озУ) приводят к распространению хрупкой трещины по всему сечению и к хрупкому разрушению. При меньших напряжениях хрупкая трещина может возникнуть, но ее развитие замедляется при выходе из области значительных остаточных напряжений.  [c.220]


Смотреть страницы где упоминается термин Надрез, влияние на напряжения : [c.850]    [c.158]    [c.42]    [c.52]    [c.142]    [c.586]    [c.167]   
Сопротивление материалов Издание 13 (1962) -- [ c.62 , c.721 , c.738 ]



ПОИСК



Влияние Влияние надрезов

Влияние напряжений

Надрез

Надрезы — Влияние на концентрацию напряжений



© 2025 Mash-xxl.info Реклама на сайте