Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Длительная прочность прн переменных нагрузках

Детали, подвергающиеся длительной повторно-переменной нагрузке, разрушаются при напряжениях значительно меньших предела прочности материала при статическом нагружении. Это имеет большое значение для современных многооборотных машин, детали которых работают в условиях циклических нагрузок при общем числе циклов, достигающем за весь период службы машины многих миллионов. Как показывает статистика, около 80% поломок и аварий, происходящих при эксплуатации машин, вызвано усталостными явлениями.-Поэтому проблема усталостной прочности является ключевой для повышения надежности и долговечности машин. -  [c.275]


Причиной поломок деталей машин в подавляющем большинстве случаев является усталость материала, т. е. явление внезапного разрушения при пониженных против предела прочности напряжениях от действия переменных нагрузок. Результаты статических испытаний и испытаний на удар дают возможность только до некоторой сте-пени судить о способности f материала переносить длительно действующую переменную нагрузку. Для определения этой важной характеристики материала, нужной для расчета на прочность машин и сооружений, работающих при переменных напряжениях, производят особое испытание материала, называемое испытанием на выносливость или на усталость.  [c.347]

Пружины, работающие длительно при переменных нагрузках (например, клапанные и др.), необходимо рассчитывать на усталостную прочность.  [c.169]

Детали, подвергающиеся длительной повторно-переменной нагрузке, разрушаются при напряжениях, значительно меньших предела прочности материала при статическом нагружении. Это обстоятельство имеет большое значение для современных многооборотных машин, детали которых работают в условиях циклических нагрузок при общем числе циклов, достигающем за весь период службы машины многих миллионов.  [c.271]

Исследование прочности при высоких температурах жаропрочных и тугоплавких материалов при простом и сложном напряженном состояниях как при статических кратковременных и длительных нагрузках, так и при повторно-переменных нагрузках и теплосменах. Особое внимание при этом должно быть обраш,ено на изучение длительной прочности и выносливости материала при не-установившихся режимах силового и теплового воздействия (раздельно и совместно).  [c.663]

Вторая группа включает параметры, оценивающие сопротивление материалов переменным и длительным статическим нагрузкам. При повторном нагружении в области многоцикловой усталости определяется предел выносливости на базе 10 -н2-10 циклов. Малоцикловая усталость отделяется от многоцикловой условно выбранной базой испытания (Л >5-10 циклов) и отличается пониженной частотой нагружения ( = 0,1-н5 Гц). Сопротивление малоцикловой усталости оценивается по долговечности при заданном уровне повторных напряжений или пределом малоцикловой усталости на выбранной базе испытаний. Сопротивление длительным статическим нагрузкам определяют, как правило, при температуре выше 20°С. Критериями сопротивления материалов длительному действию постоянных напряжений и температуры являются пределы ползучести (То,2/-с и длительной прочности Сх. Предел длительной прочности определяют при заданной базе испытаний, обычно 100 и 1000 ч, предел ползучести — по заданному допуску на остаточную (обычно 0,2%) или общую деформацию при установленной базе испытаний.  [c.46]


В справочнике впервые на современном научном уровне рассматриваются методы и оборудование для проведения длительных и ускоренных испытаний металлов, деталей машин и механизмов при переменных нагрузках и наложении среды, трения и температуры, используемые при определении характеристик усталостной прочности.  [c.2]

I. Предварительные замечания. В 2.11 и 2.13 были описаны статические кратковременные испытания гладких образцов из различных материалов на растяжение и сжатие при комнатной температуре. Предыдущие параграфы настоящей главы содержат описание различных упругих и механических свойств материалов и оценку влияния различных факторов на эти свойства. Уже при этом обсуждении приходилось обращаться к результатам динамических испытаний (при определении сопротивляемости ударному воздействию и при оценке влияния скорости деформирования на различные свойства), кратковременных и длительных испытаний при высоких температурах (при определении предела длительной прочности и предела ползучести, а также при оценке влияния температурного фактора на различные свойства), длительных испытаний при переменных по величине и знаку нагрузках, длительных испытаний при комнатной температуре и постоянной нагрузке и при монотонно убывающей нагрузке. Приходилось, наряду с рассмотрением результатов испытания гладких образцов, обращаться и к анализу материалов испытаний образцов с надрезом указывалось, что, кроме непосредственного определения интересующих инженера свойств материала, существуют косвенные пути оценки этих свойств (при помощи определения твердости) отмечалось, что,  [c.298]

В результате исследований малоцикловой усталости жаропрочных и коррозионно-стойких сталей при неизотермическом нагружении в диапазоне переменных температур 100. .. 700 °С показано, что предельное состояние определяется параметрами термомеханического нагружения (максимальной температурой, формой циклов нагрузки и температуры, длительностью выдержки при экстремальных значениях нагрузки и температуры), а также механическими свойствами применяемых материалов (пределами статической и длительной прочности, деформационной способностью) в рассматриваемом диапазоне температур.  [c.28]

Свойства и применение. Процесс формования пенополистирола позволяет получать каркасы кресел или небольших диванов за одну операцию. После формования такие каркасы обычно драпируют и крепят к ним ножки и другие необходимые принадлежности. Основным свойством таких изделий должна быть, конечно, жесткость и твердость, позволяющие выдерживать человека без заметной деформации. Кроме того, они должны быть достаточно прочными, чтобы выдерживать постоянные или переменные нагрузки, обладать достаточной ударной прочностью и обеспечивать длительную стойкость к окружающей среде. Более подробно этот вопрос рассмотрен при анализе жестких пенополиуретанов.  [c.437]

Определение предела выносливости (усталости). Многие детали машин в процессе работы подвергаются нагрузкам, изменяющимся по величине и направлению. При таких повторно переменных нагрузках работают, например, валы, пальцы, шатуны, рессоры, пружины, шестерни и др. В результате длительной службы указанных и других металлических деталей металл постепенно из вязкого состояния переходит в хрупкое ( устает ). Хрупкое состояние объясняется появлением микротрещин, которые постепенно расширяются и ослабляют связь между зернами металла. Вследствие этого разрушение наступает при напряжениях меньших, чем предел прочности.  [c.55]

Таким образом, гораздо легче, например, вдвое повысить длительность работы детали нри переменных нагрузках (при том же напряжении), чем повысить в 2 раза величину повторного напряжения, выдерживаемого деталью (при сохранении того же числа циклов). Выбор основной характеристики повышения усталостной прочности зависит прежде всего от требований к условиям работы детали, потому что в одних случаях важно увеличить число циклов (нанример, для увеличения ресурса деталей, работающих с перегрузками), в других важно повысить напряжение при том же числе циклов, наконец, иногда необходимо увеличить и то и другое. Усталостная прочность детали может быть значительно ниже (в 2—3 раза и более) усталостной прочности материала (рис. 24.9).  [c.267]


Одним из видов нагружения при работе конструкций является знакопеременная нагрузка, прикладываемая длительное время. Такая нагрузка называется циклической. Образцы, работающие длительное время при переменной нагрузке (напряжении), могут разрушиться значительно раньше, чем наступит предел прочности материала при растяжении.  [c.181]

Рассмотрим симметричный цикл, когда напряжение меняется от +а до —а. Дадим понятие о пределе прочности при длительном действии такой симметричной переменной нагрузки. Случай симметричного цикла можно осуществить при вращении вала. Пусть вал несет тяжелый маховик, изгибающий вал тогда при вращении вала растянутые волокна его через пол-оборота оказываются сжатыми, затем снова растянутыми и т. д. Таким образом, крайние волокна находятся в условиях попеременного действия напряжений а и возможно при определенном значении о усталостное разрушение от изгиба (рис. 177). Число перемен напряжений Ы, которое следует дать для того, чтобы вызвать усталостное разрушение, зависит от величины наибольшего переменного напряжения о и от алгебраической разности между крайними значениями переменных напряжений (в данном случае последняя равна 2о).  [c.265]

С поверхности шеек, а также с поверхности щек, подвергавшихся шлифовке, удаляют различные риски и царапины, которые при длительной работе вала с переменными нагрузками могли бы вызвать трещины сначала небольшие, затем все более увеличивающиеся. Трещины снижают так называемую усталостную прочность материала и приводят со временем к разрушениям вала.  [c.110]

В гост 713—81 указаны номинальное усилие прессов по которому технологи выбирают пресс, а также допускаемое рабочее усилие Рр = 1,6Р , с которым пресс может работать длительное время без опасности поло п<и его основных деталей. На это рабочее усилие проводят расчет на прочность всех деталей пресса, работающих при переменных нагрузках.  [c.483]

Уже в первой половине XIX века было замечено, что детали машин и сооружений при действующих длительное время циклических нагрузках могут разрушаться внезапно без заметных остаточных деформаций при значительно меньших напряжениях, чем разрушающие напряжения при статическом нагружении. Явление понижения прочности материала при динамических переменных во времени напряжениях было названо усталостью, или в ы н о с л и в о с т ь ю, материала. Не совсем удачное-наименование данного явления усталость материала , сохранившееся по настоящее время, не случайно. В начале изучен причин разрушения материала при циклических нагрузках была сделано предположение, что под влиянием длительно действующих переменных напряжений материал устает и его статическая прочность понижается. Однако опыты на статическое растяжение деталей, длительное время работавших при циклических нагрузках, показали, что механические свойства материала под действием переменных напряжений не изменяются. Не подтвердилось также предположение, что переменные напряжения изменяют структуру материала. Исследованием материала под микроскопом после воздействия циклических напряжений обнаружено, что структура его не изменяется.  [c.489]

Детали, работающие при температуре, близкой к нормальной и переменных нагрузках, служат тем дольше, чем больше (до известных пределов) у них наклеп. Так, усталостная прочность резьбовых соединений при правильно выбранных режимах накатывания резьбы болтов (значительный наклеп без отслаивания верхних слоев металла, волокнистая текстура, напряжения сжатия в верхних слоях) может быть повышена в два и более раза по сравнению с прочностью соединений, у которых резьба болтов шлифована и наклеп отсутствует. У деталей, не имеющих значительных концентраторов напряжений и работающих при температуре, близкой к нормальной, наклеп увеличивает предел выносливости примерно на- 30%. У деталей из жаропрочных сплавов, работающих при повышенной температуре, значительный и особенно сквозной наклеп в два и более раза снижает длительную статическую прочность.  [c.81]

Длительная прочность при переменных нагрузках. Знание кривой длительной прочности позволяет предсказывать долговечность изделий, находящихся под постоянным напряжением, или назначать величину допускаемого напряжения для заданного срока службы. В действительности многие части машин работают в условиях переменных нагрузок и переменных температур. Возникает вопрос о том, каким образом оценивать в этих случаях их долговечность.  [c.439]

ДЛИТЕЛЬНАЯ ПРОЧНОСТЬ ПРИ ПЕРЕМЕННЫХ НАГРУЗКАХ 441  [c.441]

Допускаемые напряжения. При расчете на прочность различают допускаемые напряжения при длительной работе с постоянным и переменным режимами нагрузки. Рассмотрим выбор допускаемого  [c.356]

При расчете на прочность различают допускаемые напряжения при длительной работе с постоянным и переменным режимом нагрузки. Рассмотрим выбор допускаемых напряжений при расчете на прочность, при длительной работе с постоянным режимом нагрузки.  [c.187]

Следует отметить, что в последние годы появилось очень большое число монографий по механике разрушения. Упомянем семитомный переводной труд энциклопедического характера Разрушение , монографии Морозова и Партона, Черепанова, ряд переводных сборников. Многие авторы понимают под механикой разрушения именно и только механику распространения трещины. Но в теории трещин предполагается, что материал остается упругим и не меняет своих свойств всюду, кроме окрестности конца трещины, которая или стягивается в точку в линейной механике, или рассматривается как пластическая область или область больших упругих деформаций. Такая точка зрения далеко не исчерпывает многообразия реальных процессов разрушения. При переменных нагрузках, например, уже после относительно небольшого числа циклов в материале появляются субмикроскопические трещины, которые растут и сливаются в макроскопические трещины, приводящие к видимому разрушению. Не вдаваясь в детали микроскопической картины, этот процесс можно представить как накопление поврежденности, характеризуемой некоторым параметром состояния. Кинетика изменения этого параметра должна быть включена в определяющие уравнения среды. Такая точка зрения лежит в основе того, что можно назвать механикш рассеянного разрушения. Соответствующая теория развивается применительно к усталости металлов и длительной прочности при высоких температурах.  [c.653]


При наличии смешанного излома усталостные признаки наиболее устойчиво сохраняются в очаге разрушения, признаки нетипичного для усталости разрушения сначала появляются в зоне развитого разрушения. Следует иметь в виду, особенно при анализе эксплуатационных изломов, что в ряде материалов признаки преимущественно усталостного характера могут наблюдаться и в том случае, когда значение переменной составляющей (относительно предела выносливости) невелико, а. значение статической составляющей (относительно предела длительной прочности) существенно. Например, в литейном никелевом сплаве ЖС6У при асимметричном переменном изгибе при 950°С изломы имели типично усталостное строение при следующих относительных значениях переменной и статической составляющих fa = 0,45aw, am=0,8—0,9 Одл (da — переменная составляющая, От — статическая составляющая, aw и Одл — соответ-венно пределы выносливости и длительной прочности на 100-ча-совой базе). Лишь при ста<0,45 aw при той же статической составляющей нагрузке в зоне развитого усталостного разрушения наблюдались небольшие по размерам участки со строением, характерным для высокотемпературного статического нагружения (рис. 116).  [c.144]

Первое свойство — это способность выдерживать не разрушаясь переменные нагрузки при высоких температурах характеристикой его является условный предел выносливости, определяемый при заданной температуре и символически обозначаемый так сГшбоо- Индекс W указывает на то, что данное напряжение является условным пределом выносливости, второй числовой индекс указывает продолжительность испытания в часах. Можно поставить цель — исключить возможность разрушения от усталости. Тогда достаточно добиться того, чтобы условные пределы выносливости (с шюо. продолжительности испытания пределы длительной прочности (сгщо, Osoo. )  [c.310]

Коэффициент запаса прочности зависит от многих факторов, к которым можно отнести разброс свойств данного металла по пределу текучести, пределу длительной прочности и пределу ползучести, анизотропию свойств металла детали, масштабный фактор и механические характеристики при одноосном напряженном состоянии. К этим факторам можно отнести также возможность пульсирующей нагрузки (с переменными интервалами по времени и температуре), степень корродирования (и вид его) по времени и эрозионный износ. Большое значение имеет степень ответственности детали, в частности — опасность в случае аварии для персонала станции, особые пусковые и аварийные режимы, термические напряжения, переходная температура хрупкости, состояние поверхности, уровень остаточных (в том числе в поверхностном тонком слое) напряжений, концентрация напряжений и целый ряд других важных факторов.  [c.27]

Части машин и сооружений, подвергающиеся длительное время переменным напряжениям (нагрузкам), могут разрушиться внезапно без замётных остаточных деформаций при напряжениях, значительно меньших предела прочности материала. Это явление называется усталостью материала.  [c.123]

Существенными факторами в определении ресурса пластичности являются значение максимальной температуры, диапазон изменения переменной температуры и время нахол<дения материала под нагрузкой, а также, по-видимому, и режим нагружения (длительный статический разрыв, длительная прочность). Характерные зависимости при длительном статическом нагружении (до 10 000 ч) представлены для двух материалов разных классов на рис. 2.24 [108, 14].  [c.76]

Пластикам, являющимся упруго-вязко-пластическими материалами, свойственна нестабильность структуры во времени и при изменении температуры они имеют изменяющиеся во времени прочность и деформативность при постоянной длительно действующей, ступенчатой, непрерывно изменяющейся и повторно переменной нагрузках (зависимость прочности от времени нагружения более четко видна у терме пластов, чем у реактопластов).  [c.139]

В практических условиях службы турбинных деталей циклические напряжения обычно накладываются на статические напряжения, как это имеет место, в частности, в отношении турбинных лопаток, для которых внешними силовыми факторами являются статические растягиваюш ие и переменные изгибаюп ие нагрузки, действующие одновременно. О поведении металла в условиях комбинированного воздействия циклических и статических напряжений можно судить по диаграмме Тэпселла (фиг. 235), отличающейся от приведенной выше (п. 28, фиг. 88) диаграммы предельных амплитуд цикла тем, что по оси абсцисс в ней вместо средних напряжений цикла отложены постоянные напряжения, обусловливающие ползучесть. Точка а здесь соответствует пределу усталости, точка б — пределу длительной прочности. Разрушение в любой точке 0, лежащей на кривой абв, происходит вследствие комбинированного воздействия переменных и постоянных напряжений. Точка д соответствует статическому напряжению, вызывающему 0,1% деформации ползучести за данный промежуток времени.  [c.312]

В справочнике приведены результаты исоледования некоторых материалов, подвергнутых различным дозам ионизирующего облучения. Показана зависимость механических свойств от дозы и вида облучения. Ряд особенностей в поведении стеклопластика связан с его структурной неоднородностью и прежде всего с наличием связующего, которое является не вполне упругим. Эти особенности проявляются при длительном воздействии постоянной или изменяющейся во времени нагрузки. В работе представлены результаты исследования ползучести материала и прочности при переменных нагрузках. Исследованы также некоторые специфические вопросы, связанные с особенностями рассматриваемых материалов, например, влияние размеров образца и концентраторов напряжений различной формы на предел прочности.  [c.5]

На рис. 83 показан пример гистограммы режима работы зубчатой передачи для случая, когда последняя работает с переменной нагрузкой. За номинальную обычно принимают наибольшую из длительно действующих нагрузок (по гистро-грамме момент Aimax)- Для номинальной нагрузки устанавливают эквивалентное число циклов напряжений по которому, используя кривую выносливости, находят допускаемые напряжения (см. ниже). На рис. 204 показана кривая выносливости в логарифмических координатах. Здесь Onv — предельное напряжение по условию статической прочности, Мцо — базовое число циклов напряжений (см. гл. III), Кцст — число циклов напряжений, при котором предельное напряжение по условию усталостной прочности совпадает с таковым по условию статической прочности.  [c.289]

Режим сварки рельсового стыка характеризуется следующими параметрами установочная длина 55 — 60 мм, припуск на подогрев и оплавление (суммарный на оба рельса) 20 мм, припуск на осадку 7—9 мм, удельное давление осадки — не менее 3 кг/мм , длительность сварки 100—150 сек., скорость осадки 15 мм/сек. Приведенный режим сварки обеспечивает относительно широкую зону интенсивного нагрева, в результате чего стык после сварки охлажлается с умеренной скоростью — твердость в околостыковой зоне при этом не превышает, как правило, 250—280 единиц по Бринелю (иногда в зоне стыка встречаются также участки, обогащенные углеродом, твердость которых может достигать 400 Нд). Сваренные по приведенному режиму стыки обычно не подвергаются последующей термической обработке. При этом обеспечиваются вполне удовлетворительная статическая прочность (разрушающая нагрузка при изгибе сварного рельса, уложенного на две опоры, составляет 80—90 /д соответствующей разрушающей нагрузки целого рельса) и очень высокий предел усталости при работе на регулярную повторно-переменную нагрузку (предел усталости сварного стыка достигает 80—85 /ц предела усталости целого рельса). Образцы, вырезанные из сварного стыка, обладают сравнительно низкой ударной вязкостью (1 — 2 кгм/см ). Дальнейшее улучшение качества сварных рельсовых стыков может быть достигнуто переходом на более жесткий режим сварки (уменьшаются размеры зерна и сужается зона частичного расплавления стали, в которой часто наблюдаются рыхлости и другие дефекты) с обязательным применением последующей термической обработки. Изменение технологии требует перехода к более мощным стыковым машинам и применения термических печей.  [c.100]


Длительная прочность при переменных нагрузках в меньшей мере зависит от размеров ядра и в большей — от металла его периферийной зоны, где имеются концентраторы напряжений. Она весьма низка и уменьшается с увеличением толщины материала. Так, при 8т — 2с1 три точки по ширине полосы, имеющей сим.метричные с обеих сторон накладки, выдерживают при б = 1 и 2 мм соответственно усилие И и 9 кГ1мм , а без накладок только 4 и 5 кГ1мм . Длительная прочность соединений, сваренных на жестком режиме, выше, чем после сварки на мягком режиме.  [c.63]

Крепеж. Для соединения между собой различных деталей турбин, работающих при высоких температурах, применяют болты и шпильки, изготовляемые из высокопрочных и жаропрочных сплавов. Так, например, в некоторых конструкциях турбинные диски соединяются между собой стяжными болтами, направляющие аппараты крепятся к статору также с помощью болтов и т.д. Крепежные детали в процессе эксплуатации испытывают действие переменных температур и нагрузок. Для обеспечения работоспособности крепежных деталей их материал должен иметь 1) релаксационную стойкость (для сохранения необходимого натяга в соединении) 2) структурную стабильность во время эксплуатации (исключающую как разупрочнение материала, так и упрочнение, которое сопровождается уменьшением объема, способным в ряде случаев вызывать значительные увеличения натяга) 3) длительную прочность (для обеспечения необходимого запаса прочности) 4) нечувствительность к надрезу и высокую длительную пластичность, предупреждающие разрушение по резьбе способность противостоять повторным нагрузкам (при повторных подтягах) сопротивление вибрационным нагрузкам.  [c.39]

Предложена [161 методика испытания, которая позволяет учитывать колебания механической и термической нагрузок, ожидаемые при эксплуатации изделия. Образец с покрытием испытывают при температуре, близкой к максимальной рабочей. Применяют сочетание, постоянной нагрузки, составляющей обычно 85% предела длительной прочности основного материала при температуре испытания и переменной нагрузки. Влияние термических циклов шределяется испытаниями, аналогичными описанным В. Л. Эйв-зш [21]. При термической усталости под напряжением образцы нагружаются до уровня, соответствующего приблизительно пре-щщгьной нагрузке при максимальной температуре испытания, в атем образец подвергается действию термических циклов от комнатной до предельной температуры.  [c.254]

Прочность сцепления (связывающая способность клея). Клеевые соединения хорошо выдерживают скалывание (сдвиг), хуже — отрыв и отдирание. Испытание сводится к определению предела прочности при статическом сдвиге (табл. 25.1). Кроме того, устанавливается прочность при отрыве (равномерном и неравномерном), а также прочность при длительно действующих постоянных и переменных вибрационных нагрузках. При соединении резиновых материалов определяют сопротивление отслаиванию и расслаиванию. Прочность клеевых соединений может превышать прочность склеиваемых материалов.  [c.406]


Смотреть страницы где упоминается термин Длительная прочность прн переменных нагрузках : [c.182]    [c.148]    [c.24]    [c.156]    [c.182]    [c.78]    [c.122]    [c.186]    [c.75]    [c.63]    [c.36]    [c.121]   
Смотреть главы в:

Сопротивление материалов  -> Длительная прочность прн переменных нагрузках



ПОИСК



Нагрузка переменная

Прочность длительная

Прочность длительная резьбовых соединений при переменных нагрузках 61—64 — Пример расчета

Прочность при переменных нагрузках



© 2025 Mash-xxl.info Реклама на сайте