Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переменная тяга

При наличии сопротивления атмосферы оптимальная траектория состоит из участков нулевой тяги, максимальной тяги и промежуточной (переменной) тяги.  [c.725]

Камеры с регенеративным охлаждением имеют ограниченную работоспособность на переменной тяге, в частности на самовоспламеняющихся топливах длительного хранения.  [c.155]

Сравнивая выражения (1.11) и (1.13), мы видим, что продолжительность полета при переменной тяге больше, чем при  [c.22]


Если ракетный двигатель работает с переменной тягой, причем то достигается изменением числа оборотов насоса, то рабочая точка на характеристике насоса в общем случае будет перемещаться не  [c.483]

Сейчас мы кратко рассмотрим характер изменения переменной массы М, переменной тяги R и аэродинамического сопротивления X. При условии постоянства массового секундного расхода топлива тяга все равно возрастает с увеличением высоты в результате уменьшения окружающего атмосферного давления (см разд. 2. 4. 4).  [c.736]

Энергетический критерий и критерий быстродействия в общем случае не эквивалентны и оптимизация маршрутов разведения по этим двум критериям приводит к различным результатам, т.е. маршрут, оптимальный по энергетике, может не быть оптимальным по быстродействию и наоборот. Неэквивалентность данных критериев определяется многими факторами переменностью тяги ДУ ступени разведения изменением массово-инерционных характеристик ступени разведения в процессе построения боевых порядков как вследствие выработки топлива, так и вследствие отделения ББ переменностью поля баллистических производных и др.  [c.504]

Все предыдущие рассуждения относились к тому случаю, когда величина тяги ракеты считалась постоянной и единственным изменяемым параметром было время выгорания топлива. Однако большие потери в скорости и дальности при полете малых ракет в атмосфере, иллюстрацией чего служат рис. 1.11 и 1.12, наводят на мысль, что более выгодным в отношении минимизации потерь от трения о воздух и от силы тяжести будет режим переменной тяги. Для строгого определения оптимальной программы тяги необходимо пользоваться методами вариационного исчисления, как, например, в работе [17].  [c.29]

Как показывает опыт, переменные силы могут определенным образом зависеть от времени, положения тела и его скорости. В частности, от времени зависит сила тяги электровоза при постепенном выключении или включении реостата или сила, вызывающая колебания фундамента при работе мотора с плохо центрированным валом от положения тела зависит ньютонова сила тяготения или сила упругости пружины от скорости зависят силы сопротивления среды (подробнее см. 76). В заключение отметим, что все введенные в статике понятия и полученные там результаты относятся в равной мере и к переменным силам, так как условие постоянства сил нигде в статике не использовалось.  [c.180]

Движение тела переменной массы. Железнодорожная платформа в момент / = 0 начинает двигаться под действием постоянной силы тяги F. Пренебрегая трением в осях, найти зависимость от времени скорости платформы v(<), если  [c.82]


Как показывает опыт, действующие на точку переменные силы могут определенным образом зависеть а) только от времени (например, сила тяги электровоза при постепенном включении или выключении реостата) б) только от положения движущейся точки, определяемого ее координатами (например, сила тяжести при движении точки на значительном расстоянии от поверхности Земли или сила упругости пружины) в) только от скорости движущейся точки (например, сила  [c.449]

В реактивных двигателях сила тяги возникает за счет сгорания топлива, находящегося на борту летательного аппарата, масса которого является, таким образом, переменной величиной, меняющейся во времени.  [c.415]

Наличие двух систем электрической тяги обусловило необходимость решения сложной технической задачи стыкования смежных тяговых участков, электрифицированных на постоянном и переменном токе.  [c.234]

Блуждающим называется ток, стекающий с токоведущих проводов электрических установок в окружающий грунт (среду [1]) где-либо в другом месте этот ток должен вернуться к электрическому генератору, которым он был выработан. Этот ток может быть постоянным или переменным, преимущественно с частотой 50 Гц (коммунальное электроснабжение) или 16 % Гц (электрическая тяга железных дорог). На своем пути в грунте блуждающий ток может натекать на металлические проводники, например на трубопроводы и оболочки кабелей. Постоянный ток при стекании с этих проводников в окружающую среду вызывает анодную коррозию (см. раздел 2.2 и рис. 2.5). Аналогичным образом и переменный ток во время анодной фазы тоже вызывает анодную коррозию. Поскольку электрическая емкость границы раздела материал — среда обычно бывает довольно большой, анодная коррозия существенно зависит от частоты, и при частотах 16 % или 50 Гц обычно наблюдается только при очень высоких плотностях тока [2—5]. В общем случае отношение коррозионный ток/переменный ток зависит также и от среды и вида металла, причем сталь, свинец и алюминий ведут себя ио-разному. Опыты по изучению коррозии [6] в грунте, вызываемой переменным током с эффективной плотностью /е/ =10 А-м при частоте 50 Гц, показали, что в стали переменный ток вызывает лишь незначительную коррозию — примерно до 0,5 % ее интенсивности при постоянном токе, в свинце — до нескольких процентов и в алюминии до 20 % интенсивности коррозии от постоянного тока. Таким образом, на практике коррозия, вызываемая переменным током, не может быть полностью исключена, в особенности на алюминии. Однако в случае свинца и стали при плотностях тока, обычно встречающихся в практических условиях, масштабы ее развития должны быть незначительными. Чаще всего коррозионные повреждения, как показали более тщательные исследования, были вызваны не переменным током, а явились следствием образования коррозионного элемента (см. раздел 4). В настоящем разделе рассматривается только коррозия блуждающими токами от установок постоянного тока.  [c.314]

Объединение заземлений на подстанциях рассматривается в 52 нормали VDE 0115/3.65 [8]. Согласно одной из рекомендаций Объединения предприятий общественного транспорта, ходовые рельсы железной дороги с тягой на постоянном токе всегда должны быть электрически отсоединены от защитных и эксплуатационных заземлений питающей сети переменного тока, в том числе и в вагонных депо и в мастерских. Соединения допускаются только с целью защиты от коррозии.  [c.319]

Ходовые рельсы электрифицированных железных дорог с тягой на переменном токе тоже образуют воронки напряжения в грунте, перпендикулярные направлению пути [6]. Поскольку разности потенциалов в грунте еще намного меньше, чем напряжение между ходовыми рельсами и далекой землей, которое по соображениям безопасности прикосновения ограничивается на уровне 65 В, воронки напряжения от рельсов в грунте не оказывают никакого воздействия на трубопроводы.  [c.428]

Мешающее индуктивное влияние на трубопроводы возможно только при тесном сближении на большой длине или параллельном прохождении с высоковольтными воздушными линиями электропередач или с контактными проводами железных дорог с тягой на переменном токе. Для кабелей телефонной связи эта проблема известна примерно с 1920 г., для трубопроводов она приобретает все большее значение в связи с увеличением рабочих токов и токов короткого замыкания в электрических установках и с улучшением качества изоляционного покрытия трубопроводов. Электромагнитные поля переменных токов, текущих в высоковольтных воздушных линиях или в контактных проводах железных дорог, наводят в близрасположенных проводниках электрического тока (независимо от того, находятся ли они на поверхности или под землей) соответствующее напряжение, которое при сквозном электрическом соединении всех труб трубопровода влечет за собой в появление токов вдоль трубопровода и ощутимой разности потенциалов между трубопроводом и окружающим его грунтом.  [c.429]


Немаловажное значение имеет и снижение пример но в 3 раза потерь электроэнергии в электросетях. Электрическая тяга на переменном токе продолжает возрастать, и сейчас общая ее длина превышает 15 тыс. км.  [c.50]

Зубчатое колесо 1, вращающееся вокруг неподвижной оси Л, входит в зацепление с колесом 3, которое вращается вокруг оси В ползуна 2. Через промежуточные зубчатые колеса 7 и 8 зубчатое колесо I связано с колесом 4, вращающимся вокруг неподвижной оси С. При вращении зубчатого колеса 1 приводятся во вращение зубчатые колеса 3 п 4 с укрепленными на них эксцентриками 5 и 6. Благодаря различию в числах зубьев зубчатых колес 3 к 4 относительное положение эксцентриков изменяется, изменяя таким образом длину хода ползуна 2, приводимого в движение эксцентриковой тягой 9. Механизм воспроизводит возвратно-поступательное движение ползуна 2 с переменным ходом.  [c.141]

Прибор аналогичного типа (рис. 66) серийно выпускается фирмой MTS (США). Датчик 3, прижимаемый системой подпружиненных тяг к испытуемому образцу, содержит обмотку переменного тока, индуктирующую в образце поле вихревых токов. С возникновением и продвижением трещины  [c.447]

Рис. 7.122. Механизм для преобразования возвратно-поступательного движения во вращательное с переменной скоростью и остановками. Ведущим звеном механизма является зубчатая рейка 1, приводящая в движение зубчатое колесо 2, закрепленное на валу 10 вместе с кривошипом 3 кулисного механизма. Собачка 6, ось которой закреплена на кулисе 8, приводит во вращение храповое колесо 4, жестко связанное с валом 5 (7 — сухарь 9 — тяга, прикрепленная к рейке). Рис. 7.122. Механизм для преобразования <a href="/info/284605">возвратно-поступательного движения</a> во вращательное с <a href="/info/333385">переменной скоростью</a> и остановками. <a href="/info/24">Ведущим звеном механизма</a> является <a href="/info/5019">зубчатая рейка</a> 1, приводящая в движение <a href="/info/999">зубчатое колесо</a> 2, закрепленное на валу 10 вместе с кривошипом 3 <a href="/info/1928">кулисного механизма</a>. Собачка 6, ось которой закреплена на кулисе 8, приводит во вращение <a href="/info/1001">храповое колесо</a> 4, жестко связанное с валом 5 (7 — сухарь 9 — тяга, прикрепленная к рейке).
Режимы качания (скорость, амплитуда) регулируются изменением передаточного числа привода и эксцентрицитета кривошипа. Для этого в ванне предусмотрены тяга с переменной длиной и отверстия в кривошипе для перестановки пальца. Режимы качания обычно выбираются в зависимости от нагрузки на платформу, характера загрязнений, потребной пропускной способности ванны и других условий.  [c.74]

Установка состоит из верхней 13 и нижней 5 массивных плит, соединенных колоннами 6 с помощью башмаков 4, основания 3, В центре нижней плиты закреплена втулка 2, служащая направляющей винта 1, перемещаемого вращением гайки 14.К винту неподвижно присоединен нижний захват 7 и корпус рабочей камеры 8, Верхний захват 9 связан с тягой 10, шарнирно соединенной с нагружающим рычагом 11. Рычаг поворачивается в кронштейне 12, а другим концом опирается на пружину 17, величина сжатия которой может регулироваться перемещением поперечин 15 и 16 по направляющим колоннам вращением маховика 2/, жестко связанного с винтом 20. Переменная составляющая нагрузки создается при мягком способе нагружения узлом динамического нагружения 22, а при жестком способе нагружения — кривошипно-шатунным механизмом 23, которые располагаются на конце рычага. Вращение неуравновешенных масс узла динамического нагружения осуществляется через гибкий вал электродвигателем постоянного тока 24. Регулируемые упоры 19 пре-  [c.45]

На экскаваторе установлены 27 электродвигателей и генераторов. Главные механизмы — подъем и тяга ковша и поворота экскаватора — имеют привод постоянного тока, вспомогательные механизмы — переменного тока.  [c.72]

Сила тяги, зависящая от переменных Е и регулируется в эксплоатации изменением от-  [c.220]

Для работы машины применяется насыщенный или перегретый пар. Парораспределение — золотниковое, с постоянной или переменной отсечкой. Расход пара колеблется от 10 до 24 кг л. с. ч. О расходе пара в зависимости от скорости и силы тяги вспомогательной машины см. гл. VII.  [c.345]

Внутри кожуха прибора находится устройство упругой и жесткой обратной связи, клеммник и-микровыключатели. Устройство обратной связи состоит из сильфонов I и 3, двух дифференциально-трансформаторных датчиков 7 и 8, дросселя переменного сечения 2 и датчика жесткой обратной связи 10. При повороте вала электрического исполнительного механизма через посредство тяги 9, соединенной с поводком МЭО, один из сильфонов сжимается, а другой растягивается. За счет изменения объема задающей пары сильфонов возникает перепад давления воздуха, преобра-  [c.124]

В современных конструкциях сосудов высокого давления, энергетических установках, летательных аппаратах, судовых исполнительных механизмах, строительных конструкциях широко применяются резьбовые соединения, работающие в условиях переменного механического и теплового воздействия. Из-за ограничений по компоновке, габаритам и весу конструкций дополнительное увеличение размеров этих соединений во многих случаях не представляется возможным. Такие конструктивные ограничения, а также условия внешнего нагружения могут в определенных случаях приводить к упругопластическому циклическому деформированию резьбовых соединений с последующим их выходом из строя при малом числе циклов нагружения. От несущей способности таких соединений зависит надежность не только узла, но и установки в целом. В связи с ростом рабочих параметров конструкций увеличились и размеры применяемых в них резьбовых соединений, диаметры которых зачастую теперь достигают значений 150—200 мм. Разъемные резьбовые соединения (рис. 10.1) можно условно разделить на две группы крепежные соединения (шпилечные, болтовые — рис. 10.1, я, 6) и резьбовые соединительные элементы (соединения тяг, штоков и труб — рис. 10.1, в).  [c.191]


Двигатели, работающие с переменной тягой на одной высоте полета, требуют другого способа регулирования. Первая задача регулирования таких двигателей состоит в том, чтобы поддерживать более ИЛИ1 менее постоянным давление в камере, так как значительное понижение давления в ней приводит к ухудшению процесса сгорания и возможности возникновения неустойчивого режима сгорания И даже затуханию камеры.  [c.122]

Схема балансировочного станка более совершенного типа показана на рис. 310,6. Опоры 1 балансируемой детали 3 опираются на плоские пружины 2. Колебания опор передаются тягами 4 электрическим устройствам 5, в которых возникает ток. Напряжение этого тока пропорционально амплитудам колебаний опор. Ток от этих электрических устройств после усиления подводится к одной из обмоток ваттметра 6. По показанию ваттметра 6 судят о величине амплитуды, а следовательно, и овеличинедис-баланса. Другая обмотка ваттметра 6 получает ток от генератора 7 переменного тока, ротор которого вращается синхронно с балансируемой деталью и представляет собой двухполюсный магнит. Градуированный статор генератора можно поворачивать при помощи рукоятки 8 или специального маховичка во время вращен я детали. Положение дисбаланса детали определяется по углу поворота обмотки статора, определяемому по лимбу поворачиваемой рукояткой или маховичком при максимальном отклонении стрелки ваттметра. Современные балансировочные станки высокопроизводительны и позволяют балансировать до 60—80 деталей в час.  [c.513]

Предположим теперь, что вследствие какого-либо возмущения, например попадания самолета в поток воздуха или изменения тяги двигателя, произошло малое нарушение pa NfaTpnBaeMoro равновесного релчима, R последующем дви/кении самолета скорость уже не имеет прежнего значения vo, а становится переменной и равной  [c.269]

Больший практический интерес представляет другой случай изменения приведенной скорости А,а, когда секундный расход и начальные параметры газа сохраняются постоянными. Это условие может быть реализовано, если при постоянной площади критического сечения сверхзвукового сопла Fkp изменять площадь выходного сечения Fa. Характер зависимости тяги от величины Яа в этом случае позволит определить рациональную степень расширения сопла для двигателя с заданными параметрами и расходом газа. Уравнения (122) и (121) не вполне удобны для такого расчета, так как содержат две переменные величины Яа и Fa. Поэтому преобрэзувм уравнение (121), заменив в нем величину Fa С ПОМОЩЬЮ выражения расхода (109)  [c.247]

С 1962 г. на смешанных (неполностью электрифицированных) участках Прибалтийской железной дороги находятся в эксплуатации спроектированные при участии Ленинградского института инженеров железнодорожного транспорта контактно-аккумуляторные поезда. На станциях, маневровые путевые парки которых не имеют контактной сети, испытываются построенные Днепропетровским электровозостроительным заводом опытные контактно-аккумуляторные маневровые электровозы ВЛ26 с аккумуляторными батареями, емкость которых достаточна для работы в режиме аккумуляторной тяги в течение 2—3 часов. В дальнейшем предполагается построить такие же электровозы с подзарядкой батарей от контактной сети переменного тока.  [c.236]

На упругом элементе динамометра укреплен якорь индукционного датчика 28. Сигнал датчика, несущий информацию о виброскорости актирного захвата /7 и частоте колебаний, подается на устройство управления машиной и питания электромагнитного возбудителя колебаний, которое обеспечивает настройку режима автоколебаний и амплитуды переменной нагрузки на испытуемый образец. Внутри упругого элемента динамометра вдоль его оси расположена тяга 19, одним концом соединенная с фланцем динамометра, на котором укреплен захват 17, а другим — с механизмом 22, преобразующим линейные перемещения тяги в угловые перемещения зеркальца 23.. Луч света от источника 24 падает на зеркальце, и отразившись от него, на шкалу 25. Положение на шкале отраженного луча определяет статическую нагрузку на образец. Высота световой полоски, получающейся на шкале при колебаниях, пропорциональна размаху переменной нагрузки, действующей на образец. При настройке машины шторку 26 устанавливают так, чтобы на фотоэлемент 27 луч света попадал лишь тогда, когда он выйдет за кромку шторки. Получающийся в этом случае сигнал с фотоэлемента служит для ограничения амплитуды нагрузки на заданном пределе. Поскольку ограничитель реагирует только на верхний уровень переменных нагрузок, аппаратуру возбуждения при пуске машины настраивают так, чтобы был запас мощности возбуждения, достаточный для компенсации уменьшения усилия, BOSMOJKHoro в процессе испытания по различным причинам, т. е. при выключенном ограничителе амплитуда нагрузки должна превышать заданную. При нормальном положении шторки  [c.121]

Установки с параллелограммными механизмами. Устройство (рис. 27) состоит из четырех парных тяг 1 одинаковой длины, шарнирно соединенных между собой с помощью цилиндрических пальцев 2. Сечения тяг подобраны таким образом, что их жесткость при растяжении существенно превышает жесткость испытуемого образца. В каждом шарнирном узле размещены щековые захваты 3 для закрепления образца 4, крепление осуществлено с помощью сдвигоустойчивого соединения на высокопрочных болтах. К двум расположенным на одной диагонали шарнирам присоединены два внешних захвата 5, передающие устройству осевую силу от источника переменной нагрузки.  [c.36]

Стойка 4 является динамометром, стойка 5 соединена с шатуном 6. Так как образец жё-стко соединён с тягами, то при вращении кривошипа он подвергается чистому изгибу. Статическая нагрузка на образец создаётся при передвижении плоской пружины—динамометра 4 — на салазках, а величина переменной деформации регулируется посредством изменения эксцентриситета (длины кривошипа). Известны два размера этой машины, позволяющие осуществлять изгибающие моменты 150 и 1600 кгсм и числа циклов напряжений соответственно 750 и 500 в минуту. В машинах подобного типа при недостаточно плотном закреплении образца в захвате он может разрушиться в месте крепления (несмотря на большую ширину участков крепления) вследствие так называемой контактной коррозии [16].  [c.75]

I. Т е н 3 о м е т р р ы ч а ж п ы й у и и i е р-сальный (типа Гугенбергера), с постоянной или переменной базой. Умеличение механическое отсчеты — по шкале. С помощью струбцинок и других приспособлений (зацепы, приклеиваемые колодки, привариваемые тяги, присоски, магниты) тензометр прижимается в любом положении к поверхности детали или образца (фиг. 1) через две ножевые опоры. Предельная величина измеряемой деформации-до 0,2 мм (с перестановкой стрелки  [c.490]

Рис. 17. Схемы прессования профилей переменного сечения а — коническими иглами 6 — принудительным перемещением подвижных матриц / — коническая игла 2 — матрица 5 — контейнер 4 — прессштемпель 5 — подвижная матрица 6 — тяга подвижной матрицы А — положение инструмента при прессовании максимальных сечений профилей Б — то же, при прессовании минимальных сечений Рис. 17. Схемы <a href="/info/557861">прессования профилей</a> <a href="/info/420600">переменного сечения</a> а — коническими иглами 6 — принудительным перемещением подвижных матриц / — коническая игла 2 — матрица 5 — контейнер 4 — прессштемпель 5 — подвижная матрица 6 — тяга подвижной матрицы А — положение инструмента при прессовании максимальных сечений профилей Б — то же, при прессовании минимальных сечений

Смотреть страницы где упоминается термин Переменная тяга : [c.22]    [c.127]    [c.785]    [c.459]    [c.33]    [c.33]    [c.747]    [c.232]    [c.234]    [c.236]    [c.430]    [c.226]    [c.234]   
Смотреть главы в:

Ракетные двигатели  -> Переменная тяга



ПОИСК



Полеты с малой тягой в гравитационных полях при переменной скорости истечения (Дж. Ирвинг)

Режим работы и характеристики -тяго-дутьевых машин при переменном режиме

Тяга 671, VII



© 2025 Mash-xxl.info Реклама на сайте