Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Охлаждение регенеративное

В головке ЖГГ двигателя Р-1 пять форсунок окислителя и пять форсунок горючего располагались по концентрическим окружностям дополнительно через периферийные форсунки подавалось горючее для внутреннего охлаждения. Регенеративное охлаждение горючим в дополнение к внутреннему охлаждению использовалось в ЖГГ двигателя Р-1, поэтому камера указанного ЖГГ (она имела полусферическую форму) имела двойные стенки.  [c.145]

Впервые цикл высокого давления с однократным дросселированием был осуществлен К. Линде, и в технике известен как цикл Линде. В установке Линде используется регенеративный принцип, который заключается в непрерывном понижении температуры при дросселировании для последующего охлаждения новой порции газа. Процесс непрерывного понижения температуры продолжается до тех пор, пока не наступит температура сжижения газа.  [c.338]


В случае, если необходимое значение безразмерного эффекта охлаждения 0 окажется меньше значения, достигаемого экспериментально, необходимо использовать один из вариантов регенеративных схем. Расчет двухконтурного вихревого нагревателя ведется по такой же методике с использованием экспериментальных данных по нагреву.  [c.229]

Осуществляя газодинамическую связь между камерами разделения двух отмеченных труб, один из потоков можно использовать для формирования дополнительного потока промежуточного давления второй трубы [145]. Регенеративный вихревой холодильный аппарат, выполненный по такой схеме, показан на рис. 5.6. Газодинамическая связь состоит в том, что горячий поток разделительной вихревой трубы 1 используется в качестве дополнительного потока вихревой трубы 2, холодильный поток которой вместе с отработавшим в камере холода рабочим потоком используется в регенеративном теплообменнике 2 для охлаждения исходного сжатого газа, питающего низкотемпературную разделительную вихревую трубу 1.  [c.236]

Характерная особенность регенеративного теплообменника — нестационарный режим теплообмена. Чтобы процесс теплообмена протекал непрерывно при одинаковой продолжительности периода нагрева и охлаждения, такой теплообменник должен иметь две параллельно работающие секции.  [c.455]

По принципу действия теплообменные аппараты разделяются на поверхностные (рекуперативные и регенеративные), в которых тепловой перенос осуществляется с использованием разделяющих поверхностей и твердых тел, и смесительные, процессы нагревания и охлаждения в. которых происходят при непосредственном контакте теплоносителей.  [c.421]

В таком цикле осуществляется подогрев питательной воды до температуры Та (линия ав) теплотой, выделяющейся при охлаждении и конденсации пара. Количество теплоты, переданной от продуктов сгорания в котле, уменьшается на значение, характеризуемое площадью I ав], а количество отводимой в конденсаторе теплоты уменьшается на значение, пропорциональное площади 2 рУ2. Термический КПД регенеративного цикла  [c.201]

Улучшения экономичности ГТУ достигают не только повышением Т , но и другими способами, связанными с уменьшением количества теплоты, отводимой к холодному источнику введением регенерации теплоты и совместным применением промежуточного охлаждения рабочего тела в процессе сжатия (при больших значениях со) и подогрева его в процессе расширения. На рис. 4.23 представлены схема и цикл регенеративной ГТУ, в которой воздух с расходом (в кг/с) после сжатия в компрессоре с температурой и давлением поступает в регенератор 3, где подогревается до температуры 7 < 7 выходящими из турбины газами с расходом при  [c.205]


Для непрерывного искусственного охлаждения в низкотемпературных установках реализуются различные циклы с разными рабочими телами. Любой цикл включает несколько процессов, и, по крайней мере, один из них должен сопровождаться эффектом понижения температуры в адиабатных условиях или поглощением теплоты в изотермных. Е)сли подобный процесс в цикле протекает при изотермных условиях, то именно в этом процессе теплота от охлаждаемого тела передается в цикл. Если процесс протекает в адиабатных условиях, то теплота вводится в цикл к рабочему телу, охлажденному после этого процесса. Из числа других процессов, которые используются в циклах, наиболее распространенными являются сжатие газов и паров, охлаждение или конденсация сжатого рабочего тела и передача теплоты сжатия в окружающую среду или какому-либо приемнику теплоты, процессы регенеративного теплообмена. На основе любого метода получения холода может быть осуществлено большое количество однородных циклов.  [c.311]

В регенеративных теплообменниках в качестве промежуточного теплоносителя используется твердый достаточно массивный материал — листы металла, кирпичи, различные засыпки. Регенеративные теплообменники незаменимы для высокотемпературного ( >1000°С) подогрева газов, поскольку жаростойкость металлов ограничена, а насадка из огнеупорных кирпичей может работать при очень высоких температурах. Иногда регенеративные теплообменники выгодно использовать и для охлаждения запыленных газов, которые способны быстро изнашивать или забивать, трубки рекуператоров.  [c.124]

На диаграмме s—T (рис. 32-4), где изображен регенеративный цикл, площадь с 4"—4 —Ь —с пропорциональна количеству тепла, отданному уходящими продуктами сгорания топлива для нагревания сжатого воздуха при понижении температуры уходящих газов от Т до Г". Если пренебречь потерями в регенераторе, то количество тепла, расходуемое на нагревание воздуха, будет равно количеству тепла, отдаваемому уходящими газами при их охлаждении. В этом случае площадь  [c.373]

Теплообмен между теплоносителями является одним из наиболее важных и часто используемых в технике процессов. Например, получение пара заданных параметров в современном парогенераторе основано на процессе передачи теплоты от одного теплоносителя к другому. В конденсаторах и градирнях тепловых электростанций, воздухоподогревателях доменных печей и многочисленных теплообменных устройствах химической промышленности основным рабочим процессом является процесс теплообмена между теплоносителями. По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные. Выделяются еще теплообменные устройства, в которых нагрев или охлаждение теплоносителя осуществляется за счет внутренних источников тепла.  [c.441]

Поверхность регенеративных теплообменников попеременно омывается то первичным ( горячим ), то вторичным ( холодным ) теплоносителем. Следовательно, поверхность теплообмена таких теплообменников попеременно является тепловоспринимающей и теплоотдающей. Время, за которое происходит нагревание насадки и охлаждение пер-  [c.455]

Таким образом, в регенеративных аппаратах горячий и холодный теплоносители протекают в одном и том же канале и попеременно омывают одну и ту же поверхность нагрева. В регенеративных аппаратах процесс теплопередачи нестационарен. По мере нагревания и охлаждения температура стенки меняется. О характере ее изменения за период охлаждения дают представление кривые на рис. 8-7. На рис. 8-8 приведены кривые изменений температуры  [c.243]

На электростанциях регенеративный принцип теплопередачи нашел применение в виде воздухоподогревателя, который одной своей половиной соединяется с газоходом, а другой — с воздухопроводом. Аккумулирующая насадка здесь собирается из профильных железных листов с узкими проходами для газов и воздуха и монтируется так, что может вращаться. Через одну часть насадки протекают горячие газы (период нагрева), через другую — холодный воздух (период охлаждения). Вследствие вращения насадка непрерывно перемещается та часть, которая в настоящий момент нагревается газом, в следующий момент передвигается в воздушный по-  [c.246]


Таким образом, в регенеративных аппаратах горячий и холодный теплоносители протекают в одном и том же канале и попеременно омывают одну и ту же поверхность нагрева. В регенеративных аппаратах процесс теплопередачи нестационарен. По мере нагревания и охлаждения температура стенки меняется. О характере ее изменения за период охлаждения дают представление кривые на рис. 8-7. На рис. 8-8 приведены кривые изменений температуры 4 некоторого участка поверхности за периоды нагревания и охлаждения. Вместе с изменением температуры стенки, конечно, изменяется во времени и температура жидкости (за исключением температуры ее на входе в аппарат). Кроме изменения во времени все температуры в регенераторах изменяются также и вдоль поверхности нагрева.  [c.261]

На электростанциях регенеративный принцип теплопередачи нашел применение в виде воздухоподогревателя, который одной своей половиной соединяется с газоходом, а другой — с воздухопроводом. Аккумулирующая насадка здесь собирается из профильных железных листов с узкими проходами для газов и воздуха и монтируется так, что может вращаться. Через одну часть насадки протекают горячие газы (период нагревания), через другую — холодный воздух (период охлаждения). Вследствие вращения насадка непрерывно перемещается та часть, которая в настоящий момент нагревается газом, в следующий момент передвигается в воздушный поток и охлаждается. Таким образом, устройством вращающейся насадки в воздухонагревателе оригинально разрешен вопрос одновременного и непрерывного движения воздуха и газов через один и тот же регенеративный аппарат.  [c.264]

За рубежом (США, Япония) нашел широкое распространение водно-химический режим повышенного аминирования, создаваемый дозированием в контур аммиака до pH 9,4-н9,6 и работой конденсатоочистки в NH4—ОН-форме. Он хорошо зарекомендовал себя не только при постоянных, но и при переменных нагрузках энергоблоков при изготовлении регенеративных подогревателей низкого давления (ПНД) из углеродистой стали и на электростанциях с охлаждением конденсаторов высокоминерализованной водой.  [c.170]

На рис. 2-18 и 2-19 показан общий расход топлива с учетом экономии топлива от утилизации тепла уходящих газов. Для всех вариантов принята одинаковая степень охлаждения газов как в котлах-утилизаторах, так и в регенеративных подогревателях сырья.  [c.103]

Как видно из рис. 2-17—2-19, для всех вариантов общий расход топлива при применении регенеративных подогревателей сырья меньше, чем при охлаждении газов в котлах-утилизаторах. Так как регенеративные подогреватели обычно дешевле котлов-утилизаторов, то их применение дает больший экономический эффект.  [c.104]

Периодичность работы поверхности нагрева является характерной особенностью регенеративного теплообменного аппарата. В период нагревания насадки горячая жидкость охлаждается. отдавая тепло насадке, в период охлаждения насадка отдаёт тепло протекающей в этот период через аппарат холодной жидкости. Температуры жидкостей, омывающих поверхности нагрева, и самой поверхности нагрева изменяются не только по длине потока жидкостей, но и во времени.  [c.130]

Продолжающийся рост начальных параметров пара, вызванный необходимостью увеличения тепловой и общей экономичности станции, приведет в близком будущем к применению давления пара р = 400 ч- 600 кг см и температур пара t 650 725° С. Реальной является возможность развития регенеративного подогрева питательной воды до = (0,8—0,9) а также возможность полностью освободиться от промежуточных перегревов за счет усложнения регенеративного подогрева питательной воды, или сократить количество перегревов до одного, назначение, которого — подсушка пара. Такое решение упрощает строительство и эксплуатацию станций, облегчает проблему охлаждения горячих деталей головной части турбины. Однако такое решение возможно и выгодно при разрешении задачи сепарации влаги в области влажного пара.  [c.53]

Такое количество воздуха ни предпоследняя ступень турбины, ни вся ее проточная часть пропустить не могут. Следовательно, воздух или другие газы не могут применяться как теплоноситель для охлаждения проточной части. Исключается как регенеративный теплоноситель и водяной пар, который должен  [c.152]

Горизонтальный регенеративный воздухоподогреватель диаметром 3,7 м вынесен за пределы котла. Воздух подается от вентилятора в нижнюю часть воздухоподогревателя, а также в обмуровку экономайзера, где распределяется по четырем стенкам котла и проходит к горелкам. Расход воздуха на охлаждение обмуровки составляет 20% от необходимого для горения топлива.  [c.15]

Регенеративные воздухоподогреватели обеспечивают подогрев воздуха до 250° С, позволяют получить глубокое охлаждение уходящих газов при сжигании большой гаммы топлив (каменных углей, сернистого мазута, природного газа, бурых углей с зольностью до 20—25%,  [c.160]

В качестве утилизаторов тепла обычно применяют различные поверхностные теплообменники регенеративного и рекуперативного типов. На их изготовление и установку затрачивают значительные количества металла. Они, как правило, являются громоздкими и дорогими. Тем не менее, в поверхностных утилизаторах тепла обеспечить глубокое охлаждение дымовых газов (ниже 120—140° С) весьма трудно, а также экономически невыгодно для дальнейшего снижения температуры уходящих газов /ух (т. е. для передач большего количества тепла Q при меньшей средней разности температур А/ между теплоносителями) необходимо резко увеличить поверхность нагрева Н.  [c.4]

Немаловажным показателем эффективности любого теплообменника является его компактность, т. е. объем агрегата (м ), приходящийся на 1 м площади поверхности нагрева или на единицу переданной теплоты в 1 ч. Если для чугунного экономайзера ВТИ она составляет 0,04—0,06, для стального гладкотрубного 0,08—0,085, для регенеративных воздухоподогревателей 0,056 м /м , то для контактных экономайзеров этот показатель с учетом обязательных элементов установки —0,03, а для конденсационных поверхностных теплообменников также около 0,03 м /м (тоже с учетом входной и выходной газовых камер и изготовления этих теплообменников из высокоэффективных труб Костромского калориферного завода). Для других типов труб этот показатель существенно выше. Есть основания полагать, что конденсационные поверхностные и контактные теплообменники по компактности примерно равноценны, за исключением случаев, когда требуется весьма глубокое охлаждение газов до температуры, очень близкой (с разницей 1—  [c.250]


Приведенный на рис. 5.4 алгоритм реализован в виде программ для ЭЦВМ БЭСМ-4 на машинном языке и для БЭСМ-6 на языке АЛГОЛ. При расчете технологической схемы комбинированной установки применяются в качестве вспомогательных программы расчета физических параметров рабочих тел (низкотемпературной плазмы, кислород о-воз-душного окислителя, воды и водяного пара) и отдельных элементов схемы (МГД-генератора, камеры сгорания, сопла, компрессора и системы его охлаждения, регенеративной системы паровой турбины и т. д.). С учетом вспомогательных программ используется (например для БЭСМ-4) 3270 (8) ячеек оперативной памяти. Время счета составляет 15—40 мин в зависимости от исходных данных.  [c.126]

Камеры сторания н сопла могут иметь регенеративное, аблятивное и радиационное охлаждение Регенеративное охлаждение из-за сильного увеличения веса ЖРД применяется лишь, цля умеренных степеней уширения сопла (1=25—30). Материалами для КС и сопл при радиационном "охлаждении служат тенло-ето 5н ге металлы (ниобий, молибден, тантал, вольфрам) с покрытиями для зашиты Металла от окисления и увеличения излучательной способности. При аблятнвно1м охлаждении КС изготовляются иэ теплостойких пластиков с различными (большей частью силикатными) наполнителями  [c.246]

С точки зрения системы охлаждения эти двигатели почти не имели принципиальных отличий от своих предшественников все та же трубчатая конструкция камер, охлаждение регенеративное, водородом, в сочетании с внутренним холодным пристеночным слоем продуктов сгорания. Новым было лишь то, что на ЖРД J-2 периферийная часть форсуночной головки изготавливалась из пористой нержавеющей стали и впервые имела транспирационное охлаждение [263, с. 54].  [c.118]

Воздухоподогреватели. 11о-скольку питательная вода перед экономайзером энергетических котлов имеет высокую температуру t после регенеративного нагрева (при р= 10 МПа, например, <п, = 230 °С), глубоко охладить уходящие из котла газы с ее помощью нельзя. Для дальнейшего охлаждения газов после экономайзера ставят воздухоподогреватель, в котором нагревают воздух, забираемый из атмосферы и идущий затем в топку на горение. При сжигании влажного угля нагретый воздух предварительно используется для его супжи в углеразмольном устройстве и транспортировки полученной пыли в горелку.  [c.151]

Поэтому наибольп1ая эффективность реального цикла, в отличие от идеального, достигается при определенной (оптимальной) степени повышения давления, причем каждому значению соответствует свое Яопт (рис. 20,11). КПД простейших ГТУ не превышает 14—18%, и с целью его повышения ГТУ выполняют с несколькими ступенями подвода теплоты и промежуточным охлаждением сжимаемого воздуха, а также с регенеративным подогревом сжатого воздуха отработавшими газами после турбины, приближая тем самым реальный цикл к циклу Карно,  [c.175]

Представляют также интерес данные об опытном воздухоподогревателе, разработанном Кашуниным на основе принципа поперечно продуваемого плотного слоя. Модель этого теплообменника -производительностью 500 м ч воздуха была смонтирована на котле ФТ-40/34 Барпаулэнерго При ее испытании в течение 150 ч не было замечено заноса золы, истирания дроби (dm = 5 мм) и жалюзийны.ч проходов для газа, нарушения работы ковшевого элеватора. Скорости газа и воздуха составляли 1,06—1,83 м сек. Перетечки воздуха были равны 10%, что в 1,5—2 раза меньн1е переточек в воздухоподогревателях Юнгстрем . Нагрев воздуха от 40 до 200—230° С при охлаждении газов с 330—360 до 140—180 С соответствовал степени регенерации Ор примерно 0,6. Следует отметить в качестве недостатка подобных теплообменников их значительный вес и потребность в затратах металла для дроби. Наряду с этим наличие дробеочистки на многих электростанциях упрощает вопрос снабжения регенеративных теплообменников движущейся насадкой.  [c.384]

По принципу тепловой работы воздухоподогреватели делятся на рекуперативные, в которых нагрев воздуха осуществляется за счет охлаждения стенки (трубы, пластины), нагреваемой с другой стороны дымовыми газами, и регенеративные, у которых сначала дымовые газы нагревают теплоемкий материал (волнистые стальные листы, пустотелые керамические тела, металлические шарики и др.), а затем этот материал нагревает воздух. Поверхность нагрева регенератлпного воздухоподогревателя попеременно омывается дымовыми газами и боз -. ом. 196  [c.196]

Регенеративные аппараты. Регенеративными называются такие теплообменные аппараты, в которых процесс теплопередачи от горячего теплоносителя к холодному во времени разделяется на два периода. В течение первого периода через аппарат протекает, горячий теплоноситель, теплота которого передается стенкам и в них аккумулируется. При этом теплоноситель охлаждается, а стенки аппарата нагревактея — это так называемый период нагревания. В течение второго периода через аппарат протекает холодный теплоноситель, который отнимает аккумулированную в стенках теплоту. При этом теплоноситель нагревается, а стенки охлаждаются — это период охлаждения.  [c.261]

Универсальная тепловая машина стирлинг . Была запатентована Р. Стирлингом в 1816 г., но оценена должным образом только в последние десятилетия. Эта машина простым переводом управляющего устройства может быть переключена на работу ДВшС, холодильной машины и теплового насоса. Ее показатели как ДВшС выше показателей всех других ДВшС, а в ряде случаев и ДВС (табл. 7.1). Поскольку стирлинг нуждается в охлаждении, его показатели повышаются в условиях применения па морских аппаратах. Теоретический цикл стирлинга — регенеративный цикл Карно. Максимальная температура цикла 600—700° С, максимальное давление 100—200 бар, i- ,k = 70%, г) = 35—45%, КПД регенератора — 95—98%.  [c.143]

В регенеративных аппаратах главного контура, а также в регенераторах и охладителях вспомогательных систем теплоноситель охлаждается, причем возможны различные комбинации состава, температур стенки канала и теплоносителя и других параметров. В случае охлаждения газа неравновесного состава и низкой температуры ст,енки (7 с 410—450 °К) процесс тепло- и массопереноса существенно отличается от рассмотренного выше процесса для условий нагрева и в основном определяется величиной отношения времени диффузии Тд компонентов через ламинарный пограничный слой ко времени химической релаксации при протекании второй стадии реакции диссоциации (рекомбинации).  [c.82]

Парогенераторы Дрезденской АЭС (США). На Дрезденской станции мощностью 180 Мет с кипящим водяным реактором применен пароводяной цикл двух давлений с регенеративным подогревом питательной воды. Первичный пар давлением 70 ата в количестве 640 т1час образуется непосредственно в реакторе, откуда через барабан-сепаратор и влагоотделитель поступает в первую ступень турбины. Вода из барабана-сепаратора при температуре насыщения подается циркуляционными насосами к парогенераторам, где за счет ее охлаждения образуется пар второй ступени давления (35,7 ата) в количестве 540 ml час [125]. Эта ступень состоит из четырех независимых циркуляционных петель с парогенератором и циркуляционным насосом. Каждая петля размещается в изолированном боксе с биологической защитой. Станция может работать при отключении одной или двух петель.  [c.52]

Практика указывает на целесообразность размещения этих буферных баков вне здания в непосредственном примыкании к зданию центральной деаэрационно-пита-тельной установки. В баках предусматриваются устройства для поддержания защитной паровой подушки. Заполнение баков осуществляется самотеком деаэрированной и охлажденной в регенеративных водяных теплообменниках водой через специальную нижнюю дренажную систему. Откачка же из баков воды производится при помощи вспомогательной группы подппточ-ных насосов. Указанные насосы работают параллельно с основными подпиточными насосами, включаются и выключаются автоматически по импульсу от давления в обратной магистрали теплоснабжающей установки. Система автоматики должна обеспечивать заполнение баков водой с температурой 60—70° С в периоды провала гидравлической нагрузки и включение в работу в периоды недостаточности располагаемой производительности деаэраторов и основных подпиточных насосов. Все указанные операции должны надежно контролироваться и дистанционно управляться с рабочего места дежурного по водоочистке и центральной деаэрационно-питатель-ной установки.  [c.304]



Смотреть страницы где упоминается термин Охлаждение регенеративное : [c.105]    [c.55]    [c.588]    [c.244]    [c.139]    [c.291]    [c.102]    [c.104]    [c.85]    [c.25]    [c.130]    [c.10]   
Ракетные двигатели (1962) -- [ c.442 , c.457 ]



ПОИСК



Использование каскадного охлаждения и регенеративного теплообмена в процессах получения низких температур



© 2025 Mash-xxl.info Реклама на сайте