Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распространение колебаний в твёрдых телах

Распространение колебаний в твёрдых телах.  [c.481]

Как уже указывалось в начале этой главы, акустическая изоляция помещений может быть в очень значительной степени нарушена за счёт распространения колебаний в твёрдых телах, поскольку в процессе распространения эти колебания излучаются в окружающий воздух в форме звуковых волн. В качестве примеров можно указать на шум машин (насосов, вентиляторов и т. п.), обусловленный переносом колебаний через коробку здания, связанную с фундаментом машины, на шум шагов в смежных этажах, на шумы, распространяющиеся ио трубам центрального отопления, и т. д. Явления этого рода играют существенную роль вследствие того, что затухание волн, распространяющихся в твёрдом теле, очень невелико.  [c.481]


О. 3., распространяющегося в твёрдом теле [5,6]. При распространении звука в изотропном твёрдом теле наиб, простой характер носит отражение сдвиговых волн, направление колебаний в к-рых параллельно плоскости раздела. Конверсия мод при отражении или преломлении таких волн отсутствует. При падении на свободную границу или границу раздела с жидкостью такая волна отражается полностью (Л = 1) по закону зеркального отражения. На границе раздела двух изотропных твёрдых тел наряду с зеркально отражённой волной в среде 2 образуется преломлённая волна с поляризацией, также параллельной границе раздела.  [c.506]

Сейсмические волны, приходящие от удалённых землетрясений, имеют весьма большие периоды, достигающие нескольких секунд. Вследствие большой скорости распространения упругих волн в твёрдых телах длины таких волн достигают нескольких километров. Так, например, при периоде в 5 сек и средней скорости распространения продольных волн в верхних частях земной коры 5 км сек длина волны будет составлять 25 км Обычные микрофоны мало чувствительны к столь низким частотам и длинным волнам. Кроме того, величина смещений частиц твёрдого тела при прохождении упругой волны чрезвычайно мала и амплитуда колебаний мембраны микрофона будет ничтожна.  [c.401]

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


В явлениях природы, в науке и технике мы очень часто встречаемся с различными колебательными и волновыми движениями. К таким движениям относятся известные всем колебания маятника часов, колебания струны, движение волн на поверхности воды, распространение радиоволн и многие другие. Звук также представляет собой волновое движение. Звуковые волны возникают и распространяются не только в воздухе и других газах, но и в жидкостях и твёрдых телах. Чтобы понять особенности звуковых явлений, происходящих в различных средах, необходимо ясно себе представить, чтб такое колебания, что такое волновое движение. Поэтому прежде всего следует напомнить основные свойства и законы, которыми характеризуются колебательные и волновые движения.  [c.11]

По фотографиям ультразвуковых волн в прозрачных твёрдых телах, а также из наблюдений дифракции света на ультразвуковой решётке можно, как об этом мы говорили раньше, определить длину волны ультразвука и, зная частоту колебаний, найти скорость распространения ультразвуковых воли. Поскольку плотность образца известна, можно далее весьма точно вычислить модуль Юнга этого образца.  [c.385]

Статьи энциклопедии можно подразделить на пять групп. Первая из них характеризует процессы и явления, свойственные колебаниям и волнам вообще и акустическим в частности вторая описывает распространение ультразвуковых волн в веществе и их взаимодействие со средой в третьей рассматриваются различные виды излучателей и приёмников ультразвука и физические явления, положенные в основу их действия четвёртая группа посвящена практическому применению ультразвука — рассматриваются как отдельные конкретные применения ультразвуковых методов пли конкретные приборы, так и области ультразвуковой техники в целом к пятой группе можно отнести вспомогательные статьи, необходимые для понимания материала первых четырёх групп, в них в основном рассматриваются понятия, относящиеся к строению вещества и к физике твёрдого тела.  [c.7]

Широкое распространение получили методы С., основанные на изучении затухания и, в частности, по- глощения звука. Для большинства жидкостей и газов характерна квадратичная зависимость коэфф. поглощения звука от частоты. Отклонение от этого закона, как правило, связано с наличием релаксационных процессов (см. Релаксация), возникновение к-рых обусловлено переходом энергии с одной степени свободы на другую. В гетерогенных средах, а также в поликристаллич. твёрдых телах с размерами структурных неоднородностей порядка длины волны определяющим механизмом затухания УЗ-вых колебаний при их распространении является рассеяние звука. Частотная зависимость затухания в этом случае имеет сложный характер, и коэфф. затухания может быть пропорционален различной степени частоты (в зависимости от соотношения размеров неоднородностей и длины волны), вплоть до четвёртой.  [c.331]

УПРУГИЕ ВОЛНЫ — упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах. Напр., волны, возникающие в земной коре прп землетрясениях, звуковые п УЗ-вые волны в жидкостях, газах и твёрдых телах. При распространении У. в. в среде возникают механич. деформации сжатия и сдвига, к-рые переносятся волной из одной точки среды в другую. При этом имеет место перенос энергии упругой деформации в отсутствии потока вещества (последний возникает только в особых случаях — см. Акустические течения). Всякая гармонич. У. в. характеризуется амплитудой колебательного смещения частиц среды и его направлением, частотой колебаний, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны.  [c.351]

В радиолокации и радиоастрономии М. к. используют для обнаружения целей и определения их важнейших геом. (размеры, конфигурация) и физ. (теип-ра, плотность, диэлектрич. проницаемость и т. п.) параметров. Для физ. сред характерно появление естеств, модуляции, возникающей при воздействии маги, или электрич. полей на излучающие материальные среды (см. Зеемана эффект, Штарка эффект), при рассеянии света на колебаниях кристаллич. решётки твёрдых тел Мандельштама — Бриллюэна рассеяние) и т. д. Понятие естеств, модуляции распространяют также на волны. Так, напр., волновой пучок достаточной интенсивности может изменять параметры среды и, как следствие, модулировать свою плотность (см. Самофокусировка света). При распространении волн в нелинейных диспергирующих средах (жидкостях, плазме) возникает явление автомодуляции волн, связанное с разл. видами неустойчивости волн по отношению к НЧ-пространственно-временныи возмущениям, Естеств. модуляция находит практич. приложение в радио- и оптич. спектроскопии для диагностики параметров разнообразных среД в нелинейной оптике для формирования мощных световых потоков в акустике и др. областях прикладной физики. Способы практич. реализации М. к. связаны, как правило, с нелинейными устройствами, параметры к-рых (в радиотехнике, напр,, это ёмкость, сопротивление в акустике — плотность, и т. п.) можно изменять во времени в соответствии с законом модуляции. Техн. устройства, реализующие М. к., наз. модуляторами.  [c.178]


Др. особенность У.—возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропори, квадрату частоты, УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы) поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты вообще говоря, она мала и составляет долго % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавито1(ия. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см . На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с неск. Вт/см могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич, кавитация широко применяется в технол. процессах при этом пользуются У. низких частот.  [c.215]

Ультразвук (УЗ) — упругие колебания и волны, частота к-рых превышает (1,5—2)-10 Гц (15—20 кГц). Нижняя граница области УЗ-вых частот отделяюш ая её от области слышимого звука, определяется субъективными свойствами человеческого слуха и является условной, поскольку верхняя граница слухового восприятия человека имеет значительный разброс для различных индивидуумов. Верхняя граница УЗ-вых частот обусловлена физич. природой упругих волн, к-рые могут распространяться лишь в материальной среде, т. е. при условии, что длина волны значительно больше длины свободного пробега молекул в газах или межатомных расстояний в жидкостях и твёрдых телах. Поэтому в газах верхнюю границу частот УЗ определяют из условия приблизительного равенства длины звуковой волны и длины свободного пробега молекул при нормальном давлении она составляет 10 Гц в жидкостях и твёрдых телах определяюш им является равенство длины волны межатомным расстояниям, и граничная частота достигает 10 —10 Гц. В зависимости от длины волны и частоты УЗ обладает специфич. особенностями излучения, приёма, распространения и применения, поэтому область УЗ-вых частот удобно подразделить на три подобласти низкие УЗ-вые частоты (1,5 10 —10" Гц), средние (10 —10 Гц) и высокие (10 —10 Гц). Упругие волны с частотами 10 —10 Гц принято называть гиперзвуком.  [c.9]

Излучатели второго типа основываются на различных физич. эффектах электромеханич. преобразования. Как правило, они линейны, т. е. воспроизводят по форме возбуждающий электрич. сигнал. Большинство излучателей УЗ предназначено для работы на к.-л. одной частоте, поэтому в устройстве излучающих преобразователей обычно используются резонансные колебания механич. системы, что позволяет существенно повысить их эффективность. Преобразователи без излучающей механич. системы, напр, основанные на электрич. разряде в жидкости, применяются редко. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магни-тострикционные преобразователи и пьезоэлектрические преобразователи. Элект-родинамич. излучателп используются на самых низких ультразвуковых частотах, а также в диапазоне слышимых частот. Наиболее широкое распространение в низкочастотном диапазоне УЗ получили излучатели магнитострикционного и пьезоэлектрич. типов. Основу магнитострикционных преобразователей составляет сердечник из магнитострикционного материала (никеля, специальных сплавов или ферритов) в форме стержня или кольца. Пьезоэлектрич. излучатели для этого диапазона частот имеют обычно составную стержневую конструкцию в виде пластины из пьезокерамики или пьезоэлектрич. кристалла, зажатой между двумя металлич. блоками. В магнитострикционных и пьезоэлектрич. преобразователях, рассчитанных на звуковые частоты, используются изгибные колебания пластин и стержней или радиальные колебания колец. В среднечастотном диапазоне УЗ применяются почти исключительно пьезоэлектрич. излучатели в виде пластин из пьезокерамики или кристаллов пьезоэлектриков (кварца, дигидрофосфата калия, ниобата лития и др.), совершающих продольные или сдвиговые резонансные колебания по толщине. Кпд пьезоэлектрич. и магнитострикционных преобразователей при излучении в жидкость и твёрдое тело в низкочастотном и среднечастотном диапазонах составляет 50—90%. Интенсивность излучения может достигать нескольких Вт/см у серийных пьезоэлектрич. излучателей и нескольких десятков Вт/см у магнитострикционных излучателей она ограничивается прочностью и нелинейными свойствами материала излучателей. Для увеличения интенсивности и амплитуды колебаний используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрич. преобразователя вогнутой формы, излучающего сходящуюся сферич. или цилиндрич. волну. В фокусе подобных концентраторов достигается интенсивность 10 —10 Вт/см на частотах порядка МГц. В низкочастотном диапазоне используются концентраторы — трансформаторы колебательной скорости в виде резонансных стержней переменного сечения, позволяющие получать амплитуды смещения до 50—80 мкм.  [c.14]

До того как стало возможным получать Г. искусственным путём, изучение гиперзвуковых волн и их распространение в жидкостях и твёрдых телах проводилось гл. обр. оптич. методом, основанным на исследовании рассеяния света на Г. теплового происхождения. При этом было обнаружено, что рассеяние в оптически прозрачной среде происходит с образованием нескольких спектральных линий, смещённых относительно частоты падающего света на частоту Г. (т. н. М анделъштама — Бриллюэна рассеяние). Исследования Г. в ряде жидкостей привели к открытию в них зависимости скорости распространения Г. от частоты (см. Дисперсия скорости Звука) и аномального поглощения звука на этих частотах. Изучение Г. теплового происхождения рентгеновскими методами показало, что тепловые колебания атомов в кристалле приводят к диффузному рассеянию рентгеновских лучей, размазыванию пятен, обусловленных взаимодействием рентгеновских лучей с атомами, и к появлению фона. По диффузному рассея-  [c.87]


Наибольшее распространение в качество И. у. получили электроакустические преобразователи. В подавляю-И1,ем большинстве Р1. у. этого типа, а именно в пьезоэлектрических преобразователях, магнитострикционных преобразователях, электродинамических излучателях, электромагнитных и электростатич. излучателях, электрич. энергия преобразуется в энергию колебаний к.-л. твёрдого тела (излучаюш,ей пластинки, стержня, диафрагмы и т. п.), к-рое и излучает в окружающую среду акустич. волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрич. сигнал лишь при очень больших амплитудах колебаний вблизи верхней границы динамич. диапазона И. у. могут возникнуть нелинейные искажения. В преобразователях, предназначенных для излучения монохроматич. волны, используется явление резонанса они работают на одном из собственных колебаний механич. колебательной системы, на частоту к-рого настраивается генератор электрич. колебаний, возбуждающий преобразователь. Электроакустич. преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве И. у. сравнительно редко к ним относятся, напр., И. у., основанные на электрич. разряде в жидкости илп на электрострикции жидкости.  [c.144]

В случае ядерного С.-ф. в. связь упругих колебаний твёрдого тела с системой ядерных спинов может осуществляться посредством нескольких типов электрич. и магнитных взаимодействий, сила к-рых периодически модулируется акустич. колебаниями. Такими взаимодействиями являются магнитное диполь-дипольное между соседними спинами электрич. квадру-польное между квадрупольными моментами ядра и градиентом электрич. поля, создаваемым внешними по отношению к ядру зарядами сверхтонкое взаимодействие в ферромагнитных материалах взаимодействие ядерного магнитного момента со слабым радиочастотным магнитным полем, возникающим при распространении поперечной звуковой волны в металле, и др. Ядра со спином /> 4 могут обладать электрич. квадрупольным моментом, к-рый является мерой отклонения распределения заряда в ядре от сферич. формы. Акустич. колебания кристаллич. решётки вызывают периодич. изменения градиента внутрикристаллич. электрич. полей, к-рые, взаимодействуя с квадрупольным моментом ядра, осуществляют ядерное С.-ф. в. (т. н. динамич. ядерное квад-  [c.335]

К процессам У. т. в газах относятся коагуляция аэрозолей, низкотем пературная сушка, горение в ультразвуковом поле. В жидкостях — это в первую очередь очистка, к-рая по-лучила наиболее широкое распространение среди всех процессов У. т., а также травление, эмульгирование, воздействие ультразвука на электрохимические процессы, диспергирование, дегазация, кристаллизация. Процес-сы УЗ-вой дегазации и диспергирования в жидких металлах, а также воздействие УЗ на кристаллизацию металлов играют важную роль при использовании ультразвука в металлургии, кавитация в жидких металлах используется при УЗ-вой металлизации и пайке. УЗ-вые методы обработки твёрдых тел основываются на непосредственном ударном воздействии колеблющегося с УЗ-вой частотой инструмента, а также на влиянии УЗ-вых колебаний на процессы трения и пластической деформации. Ударное воздействие УЗ используется при размерной механической обработке хрупких и твёрдых материалов с применением абразивной суспензии и ири поверхностной обработке металлов, выполняемой с целью их упрочнения. Снижение трения под действием УЗ используется для повышения скорости резания этот же эффект, наряду с эффектом увеличения пластичности под действием УЗ, используется в процессах обработки металлов давлением (волочение труб и проволоки, прокатка). К методам У. т. относится также УЗ-вая сварка, поз-  [c.350]

УПРОЧНЕНИЕ металлов, повышение сопротивляемости металлов и сплавов лластич. деформации или разрушению в результате затруднения движения дислокаций и их размножения. У. явл. лроцессом повышения предела текучести при пластич. деформации. УПРУГАЯ ДЕФОРМАЦИЯ, см. Деформация механическая. УПРУГИЕ ВОЛНЫ, упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах, напр, волны, возникающие в земной коре при землетрясениях, звук, и ультразвук, волны в жидкостях, газах и ТВ. телах. При распространении У. в. в среде возникают механич. деформации сжатия и сдвига, к-рые переносятся волной из одной точки среды в другую. При этом имеет место перенос энергии упругой деформацид в отсутствие потока в-ва (исключая особые случаи, напр, акустические течения). Всякая гармонич. У. в. характеризуется амплитудой колебательного смещения частиц среды и его направлением, колебательной скоростью частиц, переменным механич. напряжением и деформацией (к-рые в общем случае явл. тензорными величинами), частотой колебаний ч-ц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны.  [c.787]


Смотреть страницы где упоминается термин Распространение колебаний в твёрдых телах : [c.22]    [c.164]    [c.781]    [c.415]    [c.477]    [c.573]    [c.102]    [c.637]    [c.18]    [c.315]    [c.11]    [c.14]    [c.614]    [c.421]   
Смотреть главы в:

Электроакустика  -> Распространение колебаний в твёрдых телах



ПОИСК



Колебания в твердом теле

Распространение колебаний



© 2025 Mash-xxl.info Реклама на сайте