Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перенос заряда металла

Металлы, диэлектрики, полупроводники. Металлы и диэлектрики существенно различаются характером заполнения энергетических зон электронами. На рис. 6.11 заполненным электронным состояниям отвечает двойная штриховка, а свободным — однократная. Случай а относится к металлу, б—к диэлектрику. В последнем случае свободная зона — это зона проводимости, а полностью заполненная — валентная зона. Хотя обобществленные электроны и перемещаются по кристаллу, однако для электропроводимости этого мало надо, чтобы носители заряда обладали также некоторой свободой перемещения по шкале энергии. Ведь для направленного переноса заряда нужна соответствующая составляющая скорости электронов, что связано с приращением энергии. Ясно, что в полностью заполненной зоне приращение энергии невозможно, поэтому в случае б на рисунке мы имеем диэлектрик.  [c.143]


Высокочастотная дуга полуокружности связана с присутствием оксидной пленки на поверхности модели и изменением во времени ее емкости и сопротивления. Величина емкости второй полуокружности типичная для границы раздела металл—раствор. Сопротивление переносу зарядов уменьшается во времени, указывая на ускорение кинетики реакции растворе-18  [c.18]

При коррозии металлов с водородной деполяризацией скорости частных реакций водорода и растворения металла лимитируются чисто кинетическими ограничениями, в подавляющем большинстве случаев — замедленностью переноса заряда, т. е. электрохимическим перенапряжением. Наблюдающиеся при этом закономерности можно представить графически в виде так называемых коррозионных диаграмм. На рис. 1 в координатах ток — потенциал изображены катодная (выделение водорода) и анодная (ионизация металла) поляризационные кривые с чисто кинетическими ограничениями. Для того чтобы диаграмма отвечала коррозионному процессу, на ней, согласно формуле (6), на оси абсцисс справа ( в области отрицательных значений потенциалов) располагается равновесный потен-  [c.13]

Согласно определению, величина ф-потенциала служит приближенной мерой заряда металла по отношению к среде в выбранных условиях. Хотя между ф-потенциалом и зарядом металла не всегда существует строгий параллелизм (в силу поверхностных реакций, адсорбции с частичным переносом заряда и т. д.), тем не менее эта шкала впервые дала возможность сопоставить различные металлы и оказалась полезной при качественном подходе к выбору ингибиторов коррозии при нахождении оптимальных условий электросинтеза и т. д.  [c.29]

Одним из наиболее важных моментов теории адсорбционной поляризации следует считать положение о том, что торможение при переносе заряда, если 0 i= 1, не может быть сведено только к блокировке поверхности и к изменению ф -потенциала в результате адсорбции органических веществ на электроде. В этих условиях на первый план выступает взаимодействие участников электродной реакции (прежде всего ионов металлов) с адсорбированными  [c.39]

При дальнейшем анализе механохимических явлений будет рассматриваться преимущественно влияние механических воздействий на электрохимические реакции, поскольку тем самым решаются и другие задачи с одной стороны, обсуждаемые кинетические уравнения электрохимических реакций преобразуются для описания химических реакций (т. е. протекающих без переноса заряда) путем простой замены величины электрохимического сродства величиной химического сродства, а с другой стороны, например, химическая коррозия при высокотемпературном окислении металлов по теории Вагнера рассматривается как электрохимическая реакция на модели гальванического элемента.  [c.12]


Идея о том, что саморастворение металлов не обязательно должно протекать с участием коррозионных микроэлементов, а может быть понято как разновидность процессов переноса заряда наподобие обычной обменной реакции  [c.142]

При прохождении тока через электролит перенос зарядов осуществляется как ионами меди, так и ионами серебра. Но так как ионы серебра принимают участие в катодном процессе, а ионы меди не разряжаются на катоде и. накапливаются в прикатодном пространстве, то концентрация ионов серебра у катода может стать значительно ниже, а концентрация ионов меди гораздо выше, чем в объеме электролита. Вследствие соответствующего понижения потенциала разряда ионов серебра и повышения потенциала разряда ионов меди в прикатодном слое электролита могут возникнуть такие условия, при которых начнется совместное осаждение этих металлов на катоде. Вероятность совместного осаждения серебра и меди возрастает при повышении плотности тока и недостаточно интенсивном перемешивании электролита.  [c.318]

Так, например, перенос заряда под действием электрического поля (движение ионов в электролите или электронов в металле) может вызвать одновременно и перенос их кинетической энергии (тепла) и массы (диффузия), причем эти сопряженные процессы переноса тоже в первом приближении пропорциональны V(p. Наоборот, перенос массы под действием градиента плотности или перенос тепла под действием градиента температуры могут вызвать, если речь идет о системе заряженных частиц, одновременно и перенос заряда, и возникновение электродвижущей силы, пропорциональной в этих двух случаях градиенту плотности Vp и градиенту температуры УГ. При наличии градиента температуры помимо переноса тепла может происходить и перенос массы (термодиффузия) и т. д. Такие побочные или перекрестные процессы характеризуются недиагональными коэффициентами Lik — коэффициентами взаимности. Часть коэффициентов Lik может оказаться тождественно равной нулю вследствие свойств симметрии рассматриваемой системы. Это значит, что в общем случае компоненты потоков зависят не от всех компонентов термодинамических сил. Это утверждение называется принципом симметрии Кюри.  [c.572]

Защита металлов от коррозии ингибиторами, как было показано, часто связана с химической адсорбцией, включающей изменение заряда адсорбирующегося вещества и перенос заряда с одной фазы на другую. Поэтому особое значение приобретает молекулярная структура ингибиторов. Электронная плотность на атомах функциональных групп, являющихся реакционным центром, влияет на прочность абсорбционной связи. Кроме того, прочность связи зависит и от свойств металла, а также поляризуемости функциональной группы.  [c.146]

В научной литературе отсутствуют сведения о характере и степени отклонения от стехиометрии поверхностных окислов на металлах, которые позволили бы сопоставить эти характеристики с электрохимической и коррозионной активностью электродов в растворах. Между тем в работах [2—13] было показано, что кинетика электродных реакций на окисленных металлах зависит от концентрации и знака носителей заряда в окисле и связана с процессами переноса зарядов и вещества через окисел.  [c.36]

Коррозия металлов — это процесс взаимодействия их с окружающей средой, протекающий либо путем непосредственного химического соединения (химическая коррозия), либо в результате деятельности образующихся на поверхности металла гальванических элементов (электрохимическая коррозия). Различие состоит в том, что при электрохимической коррозии в металле и в растворе электролита появляется электрическое поле и происходит перенос зарядов (в металле — электронов, а в растворе — ионов), тогда как при химической коррозии электрическое поле не возникает.  [c.12]


В одной из работ по электроосаждению олова [70] отмечается, что тормозящее действие органических добавок на электродный процесс определяется присутствием свободных электронов с энергией 0,5—0,6 р. Авторами было показано, что адсорбция кислородсодержащих соединений на олове носит специфический характер и обусловлена образованием донорно-акцепторной связи в результате переноса заряда с одной заполненной молекулярной орбитали добавки на свободный энергетический уровень в металле при этом перенос заряда возможен только в том случае, если соединение имеет л-электроны с энергией, которую можно приближенно рассчитать по уравнению = а-Ь0,бр, где а п р Кулоновский и резонансный интегралы атома углерода. Значительное уменьщение предельного тока при разряде ионов олова наблюдается, как правило, в присутствии веществ с относительно большой молекулярной массой для практически полного подавления катодного процесса необходимо вещество с молекулярной массой более 145 (711.  [c.37]

Согласно представлениям Г. Улига, критическая концентрация легирующего компонента, которой отвечает резкий скачок пассивируемости, объясняется изменением электронной конфигурации атомов сплава от заполненной а(-оболочки к незаполненной (никелевые сплавы, стали). В основу расчетов критических составов положено представление Л. Полинга о существовании в d-оболочках переходных металлов незаполненных электронных состояний (дырок). По современной электронной теории сплавов, такой большой перенос зарядов между компонентами сплавов невозможен. Эксперименты по рентгеновской фотоэмиссии показали, что число ii-электронов и дырок в d-оболочках атомов переходного металла в сплаве с непереходным не изменяется (сплав Ni—Си) или изменяется очень мало [55а—55d], — Лримеч. ред.  [c.97]

Пусть ток плотности ] переносится зарядами — е (е>0) под действием электрического поля Г = —gгad(p (<р — электрический потенциал). Изменением объема выделенной части металла при прохождении тока будем пренебрегать.  [c.22]

Начальной стадией, определяющей возможность электрохимического получения на металлах жаростойких силикатных покрытий в режиме искрового разряда, является образование анодного оксида. Перенос заряда в растущем оксиде может лимитироваться движением ионов по междоузлиям решетки (Вервей), преодолением потенциальных барьеров на межфазных границах (Мотт, Одынец) либо размножением ионных лавин в толще аморфного осадка (Янг, Цобель). В первых двух случаях выполняется линейная зависимость плотности формовочного тока от напряженности поля в пленке, во втором — уравнение  [c.75]

Учитывая, что линейность характеристики в координатах 1п г— — ]и выполняется для полного тока, включающего как ионную, так и электронную составляющие, можно предположить, что в области предпробивных значений напряженности поля перенос заряда через окисную пленку осуществляется как электронами проводимости, так и квазиионами МОаОз и МедО , образовавшимися на фазовых границах и в объеме оксида. Рекомбинация отрицательных кислородных радикалов на внутренней границе и прохождение электронов в металл вызывают появление дефектов Френкеля и рост пленки. Параллельным процессом является выделение газообразного кислорода.  [c.77]

При оксидировании алюминия в растворе силиката натрия в области предпробнвных значений напряженности поля вклад электронной составляющей тока в процесс переноса, заряда составляет более 80 что делает невозможным использование традиционных кинетических уравнений для ионного тока. В связи с этим был выполнен теоретический анализ и экспериментальная проверка применимости уравнений Янга—Цобеля, Шоттки и Пула—Френкеля для описания полного тока и его электронной составляющей на границах раздела фаз ц в объеме оксида. Путем обработки кривых спада тока при вольтотатическом режиме формовки получены линейные характеристики в координатах Ini—VU и показано, что кинетика процесса контролируется контактными явлениями на границах раздела фаз. Энергетический расчет позволил предположить существование блокирующего контакта на границе металл— оксид.  [c.238]

Согласно Фрипиату и др. [31 ]> пленка воды, адсорбированной порошкообразным стеклом, неподвижна в пределах мономолеку-лярного слоя. Так как элвктри1ческая проводимость этого слоя мала, то полагают, что носителями заряда являются протоны. Очевидно, в таком небольшом по толщине, слое вода прочно удерживается катионами металлов и поверхностная диффузионная подвижность ее меньше, чем на двуокиси кремния, содержащей то же количество адсарбирава ННой воды. В слоях, толщина которых больше, чем мономолекулярный слой, поверхностная проводимость стекла значительно возрастает и в переносе заряда участвуют также катионы. Результаты исследований стеклянных волокон [37] свидетельствуют о высокой поверхностной проводимости стекловолокна, которая после промывки волокна водой падает до уровня, сравнимого с проводимостью кварцевого волокна.  [c.95]

Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотношение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость.  [c.29]


Многие авторы предполагают, что адсорбция сероводорода на поверхности металла влияет на кинетику выделения водорода, снижая скорость стадии рекомбинации [73-75] или облегчая стадию переноса заряда [41,48, 62,67,77]. В обоих случаях поверхностная концентрация атомов водорода, а следовательно и вероятность его проникновения в глубь металла долзкны возрастать. Снижение энергии связи Рв-Н в присутствии сероводорода, например вследствие изменения электроноакцепторчой способности металла, должно приводить, по мнению некоторых авторов [78-79], к облегчению перехода атомов водорода с поверхности металла в его толщу. Поверхностная концентрация водорода должна при этом уменьшаться, что было установлено не только для железа, но и для ряда других переходных металлов [80, 1].  [c.55]

Инжекция неосновных носителей происходит при подаче прямого смещення на р — п-переход, гетеропереход или контакт металл — полупроводник вследствие уменьшения разности потенциалов на контакте. Инжектированные неосновные носители проникают в полупроводник на глубину, определяемую рекомбинацией она по порядку величины совпадает с диффузионной длиной в слабых внеш. нолях и с дрейфовой длиной (см. Дрейф носителей заряда) в сильных полях. Инжекция неосновных носителей лежит в основе действия полупроводникового диода, транзистора и др, полупроводниковых приборов. Изучение стационарных и переходных процессов И. н. з. позволяет исследовать подвижности носителей, а также определить концентрации, энергетич. положения и сечения захвата примесных центров в высокоомных полупроводниках и диэлектриках. Прохождение инжекционных токов является одним из механизмов переноса заряда в тонких диэлектрич. плёнках.  [c.148]

Энергия связи атома кислорода (Е , эВ) пограничного слоя для кластеров, моделирующих интерфейс М/А11О3 (М = 8с, Т1... Си), величина переноса заряда на пограничный атом О (д, е), заселенности связи атомов М пограничного и следующего слоев металла (ЗП) и их уменьшение (%) относительно чистых металлов, расстояния между контактирующими слоями М-А12О3 ([c.143]

Основная причина влияния скачка потенциала на скорость элек-трохимичес1сих реакций заключается в том, что скорость таких реакций лимитируется стадией переноса заряда, энергия активации которого является функцией потенциала на границе металл-раствор. В подобных случаях количественная связь между скоростью электрохимического процесса и электродным потенциалом описывается уравнением, носящим название уравнение Фольмера-Фрумкина. Применительно к реакции (4.1) для простейшего случая протекания процесса в одну стадию, т.е. при одновременном отщеплении п электронов, это уравнение имеет вид  [c.81]

Рассмотрим теперь наиболее интересный класс эксимерных лазеров, в которых атом инертного газа (например, Аг, Кг, Хе) в возбужденном состоянии соединяется с атомом галогена (например, F, С1), что приводит к образованию эксимерагалоге-нидов инертных газов. В качестве конкретных примеров укажем ArF (Я, = 193 нм), KrF (А, = 248 нм), ХеС1 (А, =309 нм) и ХеР (А, = 351 нм), которые генерируют все в УФ-диапазоне. То, почему галогениды инертных газов легко образуются в возбужденном состоянии, становится ясным, если учесть, что в возбужденном состоянии атомы инертных газов становятся химически сходными с атомами щелочных металлов, которые, как известно, легко вступают в реакцию с галогенами. Эта аналогия указывает также на то, что в возбужденном состоянии связь имеет ионный характер в процессе образования связи возбужденный электрон переходит от атома инертного газа к атому галогена, Поэтому подобное связанное состояние также называют состоянием с переносом заряда, Рассмотрим теперь подробнее КгР-лазер, так как он представляет собой один из наиболее важных лазеров данной категории. На рис, 6.26 приведена диаграмма потенциальной энергии молекулы KrF, Верхний лазерный уровень является состоянием с переносом заряда и ионной связью, которое при R = oo отвечает состоянию положительного иона Кг и состоянию 5 отрицательного иона F. Поэтому энергия при R = оо равна потенциалу ионизации атома криптона минус сродство атома фтора к электрону. При больших межъядерных расстояниях кривая энергии подчиняется закону Кулона. Таким образом, потенциал взаимодействия между двумя ионами простирается на гораздо большее расстояние (5— ЮЛ), чем в случае, когда преобладает ковалентное взаимодействие (ср., например, с рис, 6.24), Нижнее состояние имеет ковалентную связь и при R = oo отвечает состоянию 5 атома криптона и состоянию атома фтора. Таким образом, в основном состоянии атомные состояния инертного газа и галогена меняются местами. В результате взаимодействия соответствующих орбиталей верхнее и нижнее состояния при малых межъядерных расстояниях расщепляются на состояния 2 и П. Генерация происходит на переходе поскольку он имеет наибольшее  [c.383]

Причина неоднозначности результатов взаимодействия, в частности, состоит в том, что в гетерогенных системах а границе раздела металл — электролит или сплав — электролит могут протекать окислительно-восстановительные превращения (электрохимические реакции), со,провождающиеся обязательным переносом заряда через границу фаз. Термодинамическая -возможность протекания электрохимических реакций, как известно, зависит 0т специфической переменной — величины межфазной разности потенциалов (скачка потенциала) или электродного потенциала [32]. Последний отличается от межфазной разности на некоторую постоянную величину, не подлежащую экспериментальному измерению. Ничего подобного нет в гетерогенных, а тем более в гомогенных системах, рассмотренных в разд. 1.2.  [c.19]

В последнее время стало очевидным, что способность окисных фаз пассивировать металлы находится в прямой зависимости от полупроводниковых свойств окислов. Еще в наших ранних работах с Оше [19, с. 103], а также в работах Бялоб-жеского с сотр. [20] по изучению влияния облучения на сплавы было обращено внимание на то, что электрохимическое и коррозионное поведение металлов меняется в соответствии с тем, как меняются под влиянием излучения свойства окисных пленок, которые рассматривались как полупроводники. При этом исходили из того, что природа полупроводниковой пленки и отклонения от стехиометрии играют существенную роль в процессах переноса зарядов и вещества через эти пленки.  [c.20]

Перенос зарядов (электрический ток) осуществляется движением полусвободных электронов. При обычных условиях полусвободные электроны не могут выйти за пределы металла, но при затрате дополнительной энергии (нагревание, сильное электрическое поле, освещение) можно создать условия для выхода электрона из металла (например, эмиссия электронов в разряженных газах). Фактически в узлах кристаллической решетки находятся положительно заряженные атомы. Наличие на поверхности ме-  [c.9]

Скорость процесса электрокристаллизации определяется наиболее медленной стадией, ею может быть в зависимости от природы металла и условий электрокристаллизации любая из указанных стадий. На первой стадии может возникать концентрационное перенапряжение (торможение) вследствие замедленной доставки разряжающихся ионов к катоду. На второй стадии в связи с затруднением переноса заряда возникает электрохимическое перенапряже-  [c.114]


Установившийся на металле в этом случае потенциал уже не будет равновесньш (обратимым), так как в переносе зарядов участвуют разнородные ионы и равновесие в обмене однородными ионами отсутствует Ф 0 Ф 0. Такой потенциал называется необратимым электродным потенциалом. Величина его определяется скоростью протекания электродных процессов и не может быть рассчитана термодинамически. Постоянное во времени значение необратимого потенциала называется стационарным или потенциалом коррозии.  [c.9]

Скорость протекания всего процесса в целом определяется стадией, сопровождающейся наибольшими торможениями. Этими торможениями могут быть замедленный перенос разряжающихся ионов к катоду — концентрационное перенапряжение (1-я стадия) замедленный разряд ионов, который обусловлен затруднениями переноса заряда через двойной электрический слой и связанным с этим изменением физико-химического и энергетического состояния ионов (дегидратация, десольватация, распад комплексных ионов и др.) — электрохимическое перенапряжение (2-я стадия) трудности, связанные с построением кристаллической решетки (замедленная диффузия ад-атомов или ад-ионов по поверхности катода к местам роста кристаллов, затруднения при внедрении атомов в кристаллическую решетку или при образовании двух- или трехмерных кристаллических зародышей), — так называемое кристаллизационное перенапряжение (3-я стадия). Значения кристаллизационного перенапряжения сравнительно невелики и зависят от природы металла и состояния поверхности катода, которое во время электролиза меняется в результате адсорбции посторонних ионов и молекул органических веществ. Для многих металлов (5п, РЬ, Ag, Нд, Сс1 и др.), имеющих сравнительно большие токи обмена, кристаллизационное перенапряжение составляет всего лишь несколько милливольт и возникает, когда электрохимическое перенапряжение при выделении этих металлов очень мало, напри-  [c.12]


Смотреть страницы где упоминается термин Перенос заряда металла : [c.34]    [c.20]    [c.12]    [c.13]    [c.30]    [c.28]    [c.34]    [c.35]    [c.43]    [c.45]    [c.104]    [c.28]    [c.214]    [c.83]    [c.426]    [c.120]    [c.39]    [c.23]   
Теория сварочных процессов (1988) -- [ c.87 , c.90 ]



ПОИСК



Заряд

Перенос заряда

Перенос металла

Переносье

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте