Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сродство

В настоящее время имеются многочисленные экспериментальные сродства, с помощью которых изучают дислокационное и тонкое строение металлических кристаллов.  [c.34]

Образовывать оксиды и другие неметаллические соединения могут многие элементы, имеющие большее сродство к кислороду, чем м елезо. Поэтому в процессе производства стали такие элементы, введенные в последний момент плавки, раскисляют сталь, отнимая кислород у железа FeO+Af->-Af Om- -Fe.  [c.348]

Кроме большого сродства к кислороду, некоторые элементы имеют большее сродство к сере, чем железо, и при введении их образуются сульфиды.  [c.348]


Растворяться в цементите или образовывать самостоятельные карбидные фазы могут многие элементы, имеющие сродство к углероду.  [c.348]

При выплавке легированных сталей в дуговых печах в сталь вводят легирующие элементы в виде ферросплавов. Порядок ввода определяется сродством легирующих элементов к кислороду (см. с. 32). В дуговых печах выплавляют высококачественные углеродистые стали — конструкционные, инструментальные, жаропрочные и жаростойкие.  [c.39]

Такова же связь и у других окислителей, обладаюш,их, аналогично кислороду, гораздо большим электронным сродством, чем  [c.29]

При наличии химического сродства между металлом и окислителем (термодинамической стабильности окисла) хемосорбирован-ная пленка быстро переходит в состояние окисной пленки в результате протекания химической реакции  [c.31]

Самый верхний слой металла с совершенно чистой поверхностью состоит из электронов, очень слабо связанных с соответствующими атомами металла (рис. 20, а). В силу большого сродства молекулы кислорода к электрону первый акт адсорбции такой молекулы  [c.44]

По Вагнеру, металл или сплав можно назвать пассивным, когда количество, по крайней мере, одного компонента, расходуемое в химической или электрохимической реакции за одно и то же время, значительно меньше при его более сильном сродстве к кислороду, чем при более слабом.  [c.132]

Присутствие в стали марганца, обладающего большим сродством к сере, чем железо, и образующего с серой тугоплавкое соединение MnS, практически исключает красноломкость. В затвердевшей стали частицы MnS располагаются в виде отдельных включений. В деформированной стали они вытянуты в наиравлении прокатки.  [c.130]

Причины применения неметаллических материалов а) отсутствие химического сродства с материалом вала б) хорошая прирабатываемость в) мягкие продукты износа г) возможность эффективного использования в качестве смазочного материала воды или другой жидкости, являющихся рабочей средой в машине.  [c.380]

Одной из характерных особенностей большинства цветных металлов является их высокая химическая активность, сродство к газам воздуха и склонность к окислению, что приводит к резкому ухудшению свойств сварных соединений, вызывает поры и трещины. Поэтому при сварке цветных металлов необходима более качественная защита (инертный газ, вакуум, специальные флюсы) по сравнению со сваркой черных металлов и более качественная подготовка под сварку.  [c.132]

Согласно адсорбционной теории, пассивность хрома и нержавеющих сталей, благодаря их повышенному сродству к кислороду, может достигаться путем непосредственной хемосорбции кислорода из воздуха или водных растворов. Количество кислорода, адсорбированного таким образом, имеет тот же порядок величины, что и пассивная пленка на железе, образованная путем анодной пассивации или пассивации в концентрированной азотной кислоте или хроматах [27]. Сходным образом атмосферный кислород может адсорбироваться непосредственно на железе и запассивировать его в аэрируемых щелочных растворах, а также в растворах близких к нейтральным с повышенным парциальным давлением кислорода .  [c.82]


Использование специальных сплавов. Небольшие количества легирующих добавок, имеющих сродство к углероду и азоту, например алюминия, титана или ниобия и тантала [17], повышают устойчивость стали к КРН, но не предотвращают его. Легирующие добавки <2 % Ni повышают склонность к КРН низкоуглеродистых сталей в нитратах >1 % Сг или Мо —снижают.. Охлажденные с печью (перлитные) стали, содержащие >0,2 % С, обладают устойчивостью [18].  [c.136]

Лэнгмюр показал [32], что достаточно монослоя адсорбата, чтобы значительно уменьшить сродство поверхностных атомов металла друг к другу и к среде. Такие адсорбционные пленки препятствуют холодной контактной сварке металлических поверхностей. Для КРН также характерно снижение поверхностного  [c.140]

Легирование титаном или ниобием. Легирование аустенит-ных сплавов небольшими количествами элементов, обладающих большим сродством к углероду, чем хром, предотвращает диффузию углерода к границам зерен. Уже имеющийся здесь углерод взаимодействует с титаном или ниобием, а не с хромом. Сплавы такого рода называют стабилизированными (например, марки 321, 347, 348). Они не проявляют заметной склонности к межкристаллитной коррозии после сварки или нагрева до температур сенсибилизации. Наилучшей стойкости к межкристаллитной коррозии при нагреве сплава до температур, близких к 675 °С, достигают в результате предварительной стабилизирующей термической обработки в течение нескольких часов при 900 °С [14, 19]. Эта обработка эффективно способствует переходу имеющегося углерода в стабильные карбиды при температурах, при которых растворимость углерода в сплаве ниже, чем при обычно более высокой температуре закалки.  [c.307]

При изготовлении электродов для сварки алюминия и его сплавов ввиду его большого сродства к кислороду применять покрытия из окислов нельзя, так как металл будет разрушать эти окислы и интенсивно окисляться, В этих случаях покрытия практически полностью состоят из бескислородных соединений, хлоридов и фторидов (КС1, Na l, KF и т. п.), которые наносятся па стержни многократным окунанием стерлшей в водные растворы указанных компонентов.  [c.93]

При применении углекислого газа вследствие больнюго количества свободного кислорода в газовой фазе сварочная проволока должна содержа 1 ь донолнителыюе количество легирующих элементов с большим сродством к кислороду, чаще всего Si и Мн (сверх того количества, которое требуется для легирования лн талла шва). Наиболее широко применяется проволока Св-08Г2С.  [c.121]

Для электрошлаковой сварки пизколегировапных сталей повышенной прочности и средиелегированных высокопрочных сталей применяют флюсы марок АН-8, АИ-22 и др. При выборе электродной проволоки для электрошлаковой сварки следует исходить из тр( бований к составу метал са шва. Флюс практически мало влияет на состав металла шва вследствие малого его количества. Поэтому только в случае необходимости легирования шва эле-мептами, обладающими большим сродством к кислороду (например Ti, А1), следует применять флюсы на основе фторидов или системы СаР2-СаО-А1,Оз.  [c.256]

Хром но отношению к кислороду обладает несколько большим сродством, чем железо, и образует окисел СгаО с высокой температурой плавления. Хром также обладает большим сродством к углероду, чем железо, и является карбидообразующим элементом. Он может входить в состав карбидов типа ] емептпт (Fo, Сг)зС и образует карбиды типов СГ7С3 и СггзС [иногда с частичной заменой атомов хрома другими, в частности железа, например (Fe, Сг)2зС(). Карбиды хрома термически более стойкие по срав-иению с карбидом железа, они растворяются медленнее и при более высоких температурах. В связи с этим для гомогенизации твердых растворов Fe—Сг—С требуется более высокая температура (рис. 128) и более длительная выдержка, чем для углеродистых сталей (- 900° С).  [c.258]

Несмотря на большое сродство к кислороду, алюминий подвергается коррозии на воздухе и в некоторых других средах весьма слабо, что объясняется образованием плотной пленки А120я, защищаюшей металл от коррозии. Чем чище алюминии и чем он более свободен от различных примесей, тем выше его коррозионная устойчивость.  [c.565]

Осаждающее раскисление осуществляют введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы (Мп, Si, А1 и др.), которые в данных условиях обладают большим сродством к кислороду, чем <слезо. В результате раскисления восстанавливается железо и образуются оксиды МпО, SiOi, Al.,0 , и другие, которые имеют меньшую плотность, чем сталь, и удаляются в шлак. Однако часть их может остаться в стали, что понижает ее свойства.  [c.31]


Легирование стали осуществляют введением ферросплавов или чистых металлов п необходимом количестве в расплав. Легирующие элементы, сродство к кислороду которых меньше, чем у железа (Ni, Со, А о, Си), при плавке п разливке практически не окисляются и поэтому их вводят в печь в любое время плавки (обычно вместе с осталыюй шихтой). Легирующие элементы, у которых сродство к кислороду больше, чем у железа (Si, Мп, А1, Сг, V, Ti и др.), вводяг в металл после или одновременно с раскислением, в конце плавки, а иногда пепосредствеипо в ковш.  [c.32]

Сущность сварки в среде Oj состоит в том, что дуга горит в среде защитного газа, оттесняющего воздух от зоны сварки и защищающего наплавленный металл от О, и N2 воздуха. Особенностью данной сварки является сравнительно сильное выгорание элементов, обладающих большим сродством с Oj (С, А1, Ti, Si, Мп и др.). Окисление происходит за счет как Oj, так и атомарного О, который образуется при диссоциации Oj под действием тепла дуги. Непрерывный уход окислов С, Si, Мп из ванны приводит к значительному обеднению металла шва раскисли-телями, что ухудшает механические свойства соединения. Поэтому для получения качественных соединений необходимо при сварке в среде Oj иметь в сварочной ванне достаточное количество раскисляющих элементов, которые обычно вводят за счет проволоки (Св-08Г2С, Св-08ГС).  [c.61]

Операционные системы общего назначения, обеспечивающие однопрограммный режим обработки задач и диалоговый способ общения. Эти ОС включают в себя сродства, обеспечивающие ввод и вывод информации, унран-ляют 1)аботой системных обрабатывающих программ-трансляторов, редакторов, предоставляют пользователю  [c.86]

Реакционная способность (химическое сродство) металлов и термодинамическая устойчивость продуктов химической коррозии металлов характеризуются изменением стандартных изобарноизотермических потенциалов AGf соответствующих реакций (например, окисления металлов кислородом или другим окислителем), отнесенным к 1 г-экв металла, т. е. AGr/mn (рис. 7 и 8). Более отрицательные значения AGf/mn указывают на более высокую реакционную способность (химическое сродство) металла и более высокую термодинамическую устойчивость продукта химической коррозии металла.  [c.27]

По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина S (N112)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил.  [c.345]

В Советском Союзе распространены две марки железокремнистых сплавов (кремнистых чугунов), различающиеся содержанием кремния п углерода С15 (0,5—0,8% С, 14,5—157о 3)) и С17 (0,3—0,8% С, 1(з,0—18,0% 51). Чем больше в сплаве кремния, тем меньше должно быть углерода. Оптнма. пнюе содержание углерода соответствует эвтектическому составу для данного сплава. Благодаря большому сродству кремния к железу, углерод не дает карбидов железа. Сплав С17 применяется в тех случаях, когда требуются отливки с повышенной коррозионной стойкостью.  [c.239]

Характеристическими или термодинамическими функциями называют такие функции состояния системы, при помощи которых можно наиболее просто определить термодинамические свойства системы, а также находить условия равновесия в ней. К этим функциям принадлежат внутренняя энергия и, энтальпия /, энтропия 5, изо-хорный потенциал Р и изобарный потенциал I. Наиболее удобными для характеристики химических процессов являются последние две функции. Убыль этих функций в обратимых изохорно-изотермических и изобарно-изотермических реакциях позволяет определить максимальную работу этих реакций, являющуюся мерой химического сродства.  [c.300]

Ионы галогенов в меньшей степени влияют на аНодное поведение титана, тантала, молибдена, вольфрама и циркония, и их пассивное состояние может сохраняться в среде с высокой концентрацией хлоридов, в отличие от железа, хрома и Fe—Сг-спла-вов, теряющих пассивность. Иногда это объясняют образованием на перечисленных металлах (Ti, Та, Мо и др.) нерастворимых защитных основных хлоридных пленок. Однако в действительности подобная ситуация возникает благодаря относительно высокому сродству этих металлов к кислороду, что затрудняет замещение ионами С1 кислорода из пассивных пленок, вследствие более высоких критических потенциалов металлов, выше которых начинается питтингообразование.  [c.85]

Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, NO3 или SO ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен-  [c.87]


Очевидно, что границы зерен металла становятся возможными путями растрескивания, когда атомы углерода или азота (но не Feg ) образуют сегрегации по границам зерен. Чистое железо не подвержено КРН. В железе (>0,002 % С) [14] или прокатанной стали (0,06 % С), закаленных от 925 °С, концентрация атомов углерода вдоль границ зерен достаточна, чтобы вызвать склонность к КРН. Низкотемпературный отжиг (например, при 250 °С в течение 0,5 ч) приводит к равномерному выпадению карбида, что освобождает границы зерен от углерода и повышает устойчивость металла к КРН. При более длительном нагревании или при более высоких температурах, например 70 ч при 445 °С, происходит миграция дефектов (вакансий) к границам зерен дефекты увлекают с собой атомы углерода, в результате чего сталь снова приобретает склонность к КРН. С другой стороны, устойчивость к КРН может быть вызвана и холодной обработкой. При этом разрушаются непрерывные цепи сегрегаций и, что более важно, образуются дефекты, имеющие большое сродство к углероду и затрудняющие миграцию углерода по сегрегациям.  [c.135]

Чистые металлы не склонны к КРН, возможно, из-за того, что дефекты движутся в поверхностной зоне вершины трещины слишком быстро для успешной адсорбции. Присутствие межузель-ных примесей (например, атомов углерода вдоль границ зерен железа) замедляет движение дефектов (и, возможно, изменяет химическое сродство поверхностных дефектов), что способствует  [c.141]

Механизм данного явления, вероятно, заключается в диффузии кислорода внутрь сплава и реакции его с легирующими компонентами, обладающими большим сродством к кислороду, чем основной металл, прежде чем эти компоненты смогут мигрировать к поверхности сплава. При концентрациях легирующего компонента выше критической на поверхности идет образование плотного защитного слоя, состоящего из оксида этого компонента, который препятствует внутреннему окислению. Рост толщины внутреннего слоя окалины подчиняется параболическому закону, так как процесс контролируется диффузией кислорода сквозь наружную пленку. Более подробно это явление рассмотрено Реппом [48].  [c.203]


Смотреть страницы где упоминается термин Сродство : [c.108]    [c.108]    [c.295]    [c.340]    [c.346]    [c.368]    [c.385]    [c.451]    [c.63]    [c.112]    [c.113]    [c.131]    [c.136]    [c.236]    [c.13]    [c.27]    [c.141]   
Смотреть главы в:

Термодинамическая теория сродства  -> Сродство


Термодинамическая теория сродства (1984) -- [ c.34 ]

Введение в термодинамику необратимых процессов (2001) -- [ c.40 , c.41 , c.42 , c.43 , c.47 , c.57 , c.73 , c.74 , c.94 , c.103 ]

Техническая энциклопедия Том19 (1934) -- [ c.226 ]



ПОИСК



Автоматические линии — Назначение 411 Сродства транспортирования заготовок

Автоматические линии — Назначение 411 Сродства транспортирования заготовок деталей

Автоматические линии — Назначение 411 Сродства транспортирования заготовок для нарезания конических колес с круговыми зубьями

Аддитивность химического сродства

Активности и сродство

Атомы Сродство к электрону

Величины скоростей и сродства

Возрастание энтропии, обусловленное химическими реакциями. Сродство. Совместное действие химических реакХимическое сродство

Донде, П.ван Рисселъберг ТЕРМОДИНАМИЧЕСКАЯ ТЕОРИЯ СРОДСТВА (КНИГА ПРИНЦИПОВ) Металлургия

Зависимость константы равновесия и химического сродства от температуры. Принцип Ле Шателье — Брауна

Идеальные сродство смеси

Измерение химического сродства. Изотерма и изобара химических реакций. Принцип Ле-Шателье

Легирующий элемент сродство к электрону

Максимальная работа как мера химического сродства

Мера химического сродства

Местные сродства ПВО

Механическая картина сродства двух неодинаковых одновалентных атомов

Некомпенсированная теплота и сродство. Общие соотношения

Некомпенсированная теплота и сродство. Частные случаи

Нормальное химическое сродство

О химическом сродстве элементов к кислороду

Общие свойства химического сродства

Основная гипотеза и определение сродства

Получение и свойства покрытий из металлов с большим сродством к кислороду. Х.-Д. Стеффене

Правила преобразования для скоростей для сродства

Превращения при постоянном сродстве

Превращения при постоянном сродстве (переменные

Преобразование выражений для величин скоростей и сродства. Эквивалентные системы

Применения термодинамики Глава десятая Термодинамика различных физических систем Термодинамика гальванических и топливных элементов Определение химического сродства

Расчет коэффициентов активности и сродства смеси ван-дер-ваальсовых

Реакции в гомогенной фазе. Сродство, равновесие, сдвиг равновесия Химическая реакция в гомогенной среде. Сродство и условие равновесия

Реакции при постоянном сродстве

Соотношения для превращений при постоянном сродстве

Соотношения между средней теплотой реакции и средним сродством

Соотношения между частными производными сродства при переменных

Соотношения между частными производными сродства при переменных Вычисление сродства

Среднее значение сродства

Средние величины теплот реакций и сродства

Сродство асимптотический метод расчета

Сродство в гомогенных системах

Сродство в смеси ван-дер-ваальсовых газо

Сродство в смеси ван-дер-ваальсовых газов

Сродство в смеси идеальных газов

Сродство и коэффициенты активности

Сродство и некомпенсированная теплот

Сродство и некомпенсированная теплота

Сродство и скорость реакции

Сродство и теплота реакции

Сродство и термодинамические потенциал

Сродство и химические потенциалы

Сродство и электродные потенциалы

Сродство к библиография

Сродство к и непрозрачность

Сродство к кислороду

Сродство к равенство априорных вероятностей

Сродство к электрону

Сродство к электрону Статистическая механика

Сродство к электрону бинарных соединений AUIB

Сродство к электрону и потенциал ионизации (Лт) и А)

Сродство модерация

Сродство парциальное

Сродство полная вариация

Сродство полный дифференциал

Сродство расчет

Сродство химическое

Сродство частные производные

Сродство электрохимическое

Стандартное химическое сродство

ТЕОРИЯ ДИССОЦИАЦИИ Механическая картина химического сродства одинаковых одновалентных атомов

Теорема модерации сродства

Теплота и сродство

Термодинамический потенциал и сродство в случае реальной закрытой системы Полная вариация сродства в случае любой реальной системы

Фундаментальное соотношение между сродством и скоростью реакции

Химические потенциалы Гиббса, термодинамические потенциалы и сродство Фундаментальные теоремы

Химический потенциал и химическое сродство — движущая сила химических реакций

Химическое сродство. Максимальная работа

Часть . Геометрическая широкоугольная оптика Солинейное сродство при больших полях Основные положения

ЭЛЕМЕНТЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ Солииейиое сродство

Электронное сродство

Электроотрицательность элементов сродство атома к электрону

Энергия сродства атомов и молекул к протону

Энергия сродства атомов и молекул к электрону

Энергия сродства к электрону для отрицательных ионов



© 2025 Mash-xxl.info Реклама на сайте