Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проводимость поверхностная

Помимо электрической проводимости, рассмотренной выше и называемой объемной электрической проводимостью, стекло обладает также поверхностной электрической проводимостью. Поверхностная проводимость стекол возникает при взаимодействии поверхности стеклянных изделий с влагой атмосферы. Образующаяся при этом на поверхности пленка достаточно хорошо проводит электрический ток.  [c.458]

Затем рассчитывается проводимость поверхностного слоя паза, являющегося вторичной цепью (в ом )  [c.315]


По мнению ряда исследователей, пассивные пленки — тонкие защитные беспористые пленки типа поверхностных соединений с хорошей электронной, но очень плохой ионной проводимостью, которые избирательно тормозят процесс анодного растворения металла, не очень препятствуя протеканию анодного процесса выделения кислорода.  [c.308]

Электроны проводимости свободно перемещаются по всему объему металла, но не могут выходить за его пределы. Этому препятствует электрическое поле, действующее в узкой зоне, которую называют поверхностным потенциальным барьером или просто барьером.  [c.61]

Рассмотрим полупроводник, не содержащий примесей и дефектов. Не будем также учитывать влияние поверхностных состояний. При T—QK электропроводность такого полупроводника равна нулю, поскольку в нем нет свободных носителей заряда. Действительно, валентная зона полностью заполнена электронами и не дает никакого вклада в проводимость, а зона проводимости пуста. При Т>ОК возникает вероятность заброса электронов из валентной зоны в зону проводимости (рис. 7.15). В валентной зоне при этом образуются дырки. Ясно, что концентрация электронов п равна концентрации дырок р  [c.242]

При высокой плотности поверхностных состояний возможно образование поверхностной двухмерной зоны. Если эта зона заполняется электронами частично, то должна возникнуть поверхностная проводимость металлического типа. В случае металлов она не может конкурировать с большой объемной проводимостью, но в диэлектриках и полупроводниках, особенно приготовленных в виде тонких пленок, поверхностная проводимость может давать существенный вклад в общую проводимость образца.  [c.262]

В поликристаллических образцах поверхностные зоны могут существовать на поверхностях кристаллитов. сли размеры последних малы,- то поверхностная проводимость может доминировать над объемной.  [c.262]

При рассмотрении свойств макроскопических сверхпроводников, которое было дано в разделе 2, необходимо строго разграничивать так называемые полные токи п токи Мейснера. Первые наводятся в многосвязных проводниках и поддерживают полный магнитный поток постоянным, а вторые представляют собой экранирующие поверхностные токи, которые обеспечивают равенство индукции нулю внутри сверхпроводящего материала. Конечно, такое деление носит искусственный характер, так как оба тока имеют одну и ту же внутреннюю природу. Мы пользуемся этим разделением для того, чтобы иметь возможность применить для решения задачи уравнения Максвелла для двух предельных случаев, а именно для случая бесконечной проводимости и случая идеального диамагнетизма. Мы снова подчеркиваем, что эти два условия различны и в электродинамике Максвелла их нельзя смешивать.  [c.641]


Фотоэмиссия из полупроводников, в полупроводниках ФЭ может быть обусловлена возбуждением электронов из валентной зоны, с уровней примесей, дефектов, поверхностных состояний и из зоны проводимости (в вырожденных полупроводниках п-типа). Для каждого из этих случаев пороговая частота имеет свое значение. Обычно, если иное не оговорено, под фотоэлектрической работой выхода понимают минимальную энергию фотонов, при которой начинается ФЭ из валентной зоны полупроводника (табл. 25.15). Это значение, как правило, превосходит работу выхода. Спектральная зависимость квантового выхода ФЭ вблизи порога в полупроводниках имеет вид  [c.575]

В случае покоя или течения невязкой жидкости поверхностные силы оказываются нормальными к сечениям, проводимым в жидкости, что является результатом невозможности возникновения в этом случае касательных напряжений. В случае же вязкой жидкости опыт показывает существование касательных напряжений (или, как их также называют, напряжений внутреннего трения), вследствие чего поверхностные силы по сечению, мысленно проведенному в жидкости, уже не будут направлены нормально к этому сечению поэтому в случае движущейся вязкой жидкости искомыми являются величина и направление этих сил.  [c.109]

Объемное и поверхностное сопротивления зависят не только от материала образна, но и от его геометрических размеров. Для сопоставления различных материалов по проводимости вводят понятия удельного объемного р и удельного поверхностного сопротивлений диэлектрика.  [c.18]

Электроизоляционные материалы и изделия, применяемые в электрической аппаратуре, могут приходить в соприкосновение с дуговым, искровым или коронным разрядом и должны противостоять их воздействию более или менее длительное время. Примерами могут служить дугогасительные камеры электрической аппаратуры, перегородки между соседними разрывными контактами многополюсных выключателей и т. п. Для электроизоляционных элементов используются обычно композиционные материалы органического и неорганического происхождения. Под воздействием дуги происходят частичное разрушение материала с поверхности и изменение его характеристик, при этом могут наблюдаться увеличение поверхностной электрической проводимости, уменьшение массы, частичное прогорание материала в месте воздействия дуги и другие процессы.  [c.122]

На поверхности изоляции органического происхождения, находящейся под напряжением в загрязненной влажной атмосфере, нередко наблюдается появление искр ( ползучих токов ), перемещающихся с одного места на другое. Этот процесс можно представить себе следующим образом. При наличии загрязнений на поверхности материала (пыль, зола, растворенные соли и др.) во влажной атмосфере пленка оседающей на поверхность влаги имеет высокую электрическую проводимость. Возникающий под воздействием напряжения значительный ток утечки распределяется неравномерно в отдельных местах наблюдаются большие плотности тока. Вследствие этого пленка влаги на поверхности материала местами бурно испаряется, на таком участке происходит разрыв проводящей пленки с образованием мощной искры. После погасания искры вследствие перераспределения плотности поверхностного тока происходит быстрое испарение пленки влаги на другом участке, образование новой искры- и т. д. Создается впечатление, что на поверхности материала возникающие искры перебегают с места на место, чаще всего постепенно приближаясь к одному из электродов.  [c.124]

Пробой поверхностный 95 Проводимость объемная удельная 18 Протокол испытаний 15 Прочность на изгиб статический, 154, 155  [c.209]

Величины, обратные указанным проводимостям, называют сопротивлениями участка изоляции - объемным и поверхностным Л,. Общее сопротивление изоляции определяют как результирующее двух параллельно включенных сопротивлений  [c.97]

Рост поверхностной проводимости для растворимых диэлектриков объясняется наличием на их поверхности ионов, а для пористых - влаги. Кроме того, р, падает при загрязнении поверхности диэлектрика.  [c.105]

После цементации должна следовать термическая обработка, проводимая с целью увеличения поверхностной твердости и перекристаллизации сердцевинных зон стали применяют двойную закалку с последующим отпуском. Первая закалка производится при 85()—900° С с целью перекристаллизации структуры сердцевины и измельчения цементитной сетки охлаждение — в масле или на воздухе. Затем следует вторая закалка при 760—800° С. При этом возникает мелкопластинчатый мартенсит (на поверхности) и структура неполной закалки (мартенсит и феррит) в сердцевине. В случае одинарной закалки (для менее ответственных деталей) в структуре слоя сохраняется большое количество остаточного аустенита, для  [c.127]


Железо используют при изготовлении биметаллических проводов, в этом случае сердцевину провода изготовляют из железа, а поверхностный слой — из материала, имеющего более высокую электрическую проводимость (медь, алюминий).  [c.243]

Удельная проводимость и удельное сопротивление. На рис. 5.1 схематически изображен участок твердой изоляции с расстоянием между электродами 1 vi 2h (м) и сечением S = Ы (м ), по которому протекает сквозной ток утечки I (А). Ток / з складывается из объемного тока утечки / , протекающего через объем, и поверхностного тока утечки 1 , протекающего по поверхности изоляции от электрода 1 к 2. Если к электродам приложено напряжение U (В), то проводимость G 3 (См) такого участка изоляции равна G 3 = I kJU. Величина, обратная Сиз. называется сопротивлением изоляции / з = 1/Оиз (Ом).  [c.133]

Для твердых диэлектриков ток / определяет величину объемной Gp, а ток / — поверхностной G проводимости изоляции, а соответственно объемное и поверхностное R, сопротивления.  [c.133]

Электропроводность диэлектрика характеризуют параметрами удельной объемной а и поверхностной а, проводимостью или удельным объемным р и поверхностным Рз сопротивлением. Если объемное сопротивление изоляции (рис. 5.1) равно / , то р = R ,S/h. Приняв, что рассматриваемый участок имеет форму куба, где h — Ь = I = 1 (м), получим, что р имеет размерность Ом-м,  [c.134]

Поверхностный ток утечки / протекает по участку диэлектрика длиной h от электрода J к 2, периметр которых равен р = 2 (I Ь). Поэтому удельное поверхностное сопротивление равно р, = р/к Ом), а проводимость (См).  [c.134]

Для газообразных и жидких диэлектриков поверхностное сопротивление и проводимость не определяются.  [c.134]

Важную группу II. я. составляют электроповерхност-ные явления поверхностная проводимость, поверхностный электрич. потенциал, электронная эмиссия и др. Все они связаны с образованием на межфазной границе двойного электрического слоя в результате эмиссии или специфнч. адсорбции ионов, а также ориентации диполей в поле поверхностных сил (в случае полярных жидкостей в этом процессе могут играть существенную роль диполь-квадрупольные взаимодействия).  [c.653]

Важною фуппу составляют электрические поверхностные явления поверхностная проводимость, поверхностный электрический потенциал, электронная эмиссия и др. Все они связаны с образованием на межфазной фанице двойного электрического слоя в результате эмиссии электронов или спегщфической эмиссии ионов, а также ориентации диполей в поле поверхностных сил,  [c.60]

Наибольшее применение в очистных процессах нашли коллоидные (мылоподобные) ПАВ. В водных растворах коллоидные ПАВ имеют высокую поверхностную активность, они способны образовывать коллоидные агрегаты - мицеллы. Причиной мицеллообразования является наличие в молекулах сильнополярной фуппы и гидрофобного радикала. Эта способность проявляется при пороговой концентрации ПАВ. Образование мицелл при критической концентрации мицеллообразования (ККМ) приводит к резкому изменению очистных свойств растворов ПАВ, при этом меняются плотность, электрическая проводимость, поверхностное натяжение и моющее действие этих растворов. Величина ККМ зависит от вида ПАВ, наличия в растворе ш,елочных добавок и температуры раствора. Для различных ПАВ значения ККМ составляют 1... 10 г/л.  [c.95]

Если в молекуле ПАВ углеводородный радикал небольшой (Сг—Сз), то такое вещество полностью растворяется в воде и практически не обладает поверхностной активностью. При длине радикалов Сю— is полного растворения ПАВ не происходит — в растворе содержатся неорганические и органические ионы, а также мицеллы-агрегаты из 50—100 плотно упакованных молекул ПАВ, т. е. образуется полуколлоидная система. Образование мицелл начинается при достижении критической концентрации ПАВ и наблюдается в узкой области концентраций. При этом меняется плотность, электрическая проводимость, поверхностное натяжение и моющее действие этих растворов. Поэтому ПАВ являются основным компонентом моющих средств, обеспечивающих эффект очистки.  [c.29]

Во всех случаях ингибированные продукты с высокой полярностью, электрической проводимостью, поверхностной активностью на поверхностях раздела, обладающие лучшими проникающими и вытесняющими свойствами, более прочными адсорб-ционно-хемосорбционными пленками, лучшими защитными и смазывающими свойствами имеют преимущества по уменьшению и предотвращению всех видов износа (см. табл. 38).  [c.236]

Среднее направление ориентации осей молекул ЖК в любой точке Пространства г принято описывать с помощью единичного вектора молекулярной ориентации п(г), называемого директором. Ориентация директора в слое нематического жидкого кристалла определяется граничными условиями на поверхностях подложек ячейки и возмутаюишм воздействием (в нашем случае — электрическим полем). Деформация директора в ориентированном слое НЖК вызывает соответствующие изменения его оптических свойств (двулучеиреломления, оптической активтюсти, пропускания, рассеивающей способности и др ) и электрических свойств (емкости, проводимости, поверхностной поляризации и др.).  [c.85]

Адгезия под действием электрического поля. Под действием элект рического поля в жидкой среде могут происходить следующие процессы адгезия частиц к поверхности, отрыв ранее прилипших частиц и образование агрегатов частиц. Адгезионное взаимодействие определяется свойствами и идкой среды и частиц, а также напряженностью электрического поля. При наличии твердых частиц в жидкости изменяется ее проводимость. Поверхностную проводимость суспензии можно выразить посредством относительной величины До 203], которая равна отношению электропроводности электролита к электропроводности суспензии, находящейся в этом электролите.  [c.231]


Табличные данные об электросопротивлении материалов могут служить только для качественных сравнений при выборе электроизоляции и оценке местных условий измерения. В производственных условиях сопротивление футеровочных материалов иногда резко снижается из-за наличия на них ошлакований, контакта с расплавленными материалами, поглощения паров, осаждения легкоплавкой золы и т. д. В подобных случаях может иметь место дополнительная проводимость поверхностных рабочих слоев футеровки аппаратов и оболочек термопар. Все эти обстоятельства могут служить источниками погрешностей при измерении температуры в силу того, что обычные рабочие напряжения тока в электропечах в сотни тысяч раз превышают улавливаемые измерительными приборами изменения э. д. с. термопар. Это тем более опасно, что промышленные термопары обычно армируются (частично или полностью) в наружных металлических оболочках.  [c.187]

См. При окраске древесины с меньшей влажностью применяют специальные меры для повышения ее электрической проводимости поверхностное увлажнение, обработку растворами ПАВ (например, 7—10%-ным раствором алкамона ОС в уайт-спирите) или кислот (в частности, фосфорной), нанесение специальных токопроводящих грунтовок.  [c.212]

При подаче напряжения на электроды начинается процесс растворения материала заготовки-анода. Растворение происходит главным образом на выступах микроиеровностей поверхности вследствие более высокой плотности тока на их вершинах. Кроме того, впадины между микровыступамн заполняются продуктами растворения оксидами или солями, имеющими пониженную проводимость. В результате избирательного растворения, т. е. большей скорости растворения выступов, микронеровности сглаживаются и обрабатываемая поверхность приобретает металлический блеск. Электрополирование улучшает электрофизические характеристики деталей, так как уменьшается глубина микротрещин, поверхностный слой обрабатываемых поверхностей не деформируется, исключаются упрочнение и термические изменения структуры, повышается коррозионная стойкость.  [c.406]

Способность мембраны передавать или не передавать энергию и вещества из одной части системы в другую формулируется на языке ее качественных характеристик. Различают мембраны подвижные и неподвижные, гибкие и жесткие, проницаемые для конкретных частиц и непроницаемые. Подвижные мембраны способны изменять свое положение в пространстве, а гибкие — изменять свою площадь и форму. В первом случае изменяются объемы разделяемых частей системы, а во втором — в дополнение к этому может производиться работа изменения величины поверхности мембраны. Если жесткая неподвижная мембрана разделяет два раствора и проницаема ие для всех, а лишь для некоторых из нейтральных компонентов (полупроницаемая мембрана), то такую систему называют осмотической, если же при этом мембрана способна пропускать через себя ионы, то говорят о равновесии Доннана. При подвижных мембранах с ионной проводимостью имеют дело с обычными электрохимическими равновесиями. Частным случаем мембранных равновесий можно считать и гетерогенные равновесия между различными фазами вещества. Роль мембраны в этом случае играет естественная граница раздела соприкасающихся фаз ( поверхностная фаза ) или другая фаза, в равновесии с которой находятся гомогенные части системы. Например, при так называемых изопьестических (изобарических) равновесиях ею может сл) жить общая паровая фаза над жидкими растворами с различающимися концентрациями веществ.  [c.129]

Исходя из электромагнитной теории света, механизм возникновения светового давления качественно можно пояснить следующим образом (рис, 28.1). Пусть на плоскую иоверхность Р тела надает электромагнитная световая волна. Векторы Е и Н лежат в плоскости Р. Рассмотрим, как они будут воздействовать на электрические заряды тела. Электрическая компонента Е электромагнитного поля действует на заряд д с силой Ек = < Е. Под воздействием этой силы положительный заряд начнет смещаться вдоль поверхности по направлению Е, а отрицательный—против направления Е. Такое смеи1ение зарядов представляет собой поверхностный ток ], параллельный Е. В телах со свободными зарядами (проводники) это будет ток проводимости, а в диэлектриках — поляризационный ток смещения. Магнитная компонента Н электромагнитного поля воздействует на движущийся заряд с силой Лоренца Е= (<7/с)[уН], направленной в сторону распространения света. Равнодействующая всех этих сил и воспринимается как давление, оказываемое светом и а тело.  [c.183]

Интерпретация экспериментов по измерению сопротивления ) очень затруднительна по двум причинам. Первая из них связана с тем, что в сверхпроводящем состоянии проводимость обусловлена только нормальными электро 1амц, вследствие чего для вычисления о необходимо использовать двухжидкостную модель. Вторым источником трудностей является сложность теории проводимости даже для нормального состояния, что объясняется очень большой длиной свободного пробега электронов в нормальном состоянии по сравнению с глубиной скин-слоя. В результате для описания нормальной проводимости необходимо пользоваться более сложной теорией аномального скин-эффекта [178]. Таким образом, для объяснения рассмотренных экспериментов необходимо применить двухжидкостиую модель к усложненной теории проводимости. Поэтому мы можем рассчитывать лишь на качественное соответствие теории и опыта. В частности, нужно отметить, что наблюдаемая на опыте зависимость поверхностного сопротивления от частоты противоречит теории (см. гл. IX, п. 34).  [c.649]

Теория парамагнитного эффекта, в некоторой степени соответствующая теории Лондона, была дана Мейснером [98]. Комбинация Я и на поверхности цилиндра приводит к силовым линиям, спирально расположенным относительно его оси. Мейснер предположил, что сверхпроводящие области в промежуточном состоянии более пли менее следуют друг за другом и вытягиваются вдоль силовых линий. Проводимость в этом случае должна быть сильно анизотропной, с папменьпгнм значением в направлении, параллельном полю. Кроме того, линии тока были бы спиральными и дали бы парамагнитный поток. Хотя теория и находится в качественном и даже полуколичественном согласии с экспериментом, она не дает значения критического тока (Jg). Ее дальнейшее развитие потребует, вероятно, учета поверхностной энергии.  [c.750]

Удельное поверхностное сопротивление толстоплёночных проводников на основе алюминия составляет 0,02...0,05 Ом, что соответствует уровню проводимости Ag - РФ и Ag - К проводников.  [c.46]

Следовательно, проводимость 0=1/11 складывается из двух проводимостей объемной 0 =1уия поверхностной 0 =1уи-.  [c.97]


Смотреть страницы где упоминается термин Проводимость поверхностная : [c.248]    [c.160]    [c.146]    [c.113]    [c.450]    [c.655]    [c.8]    [c.172]    [c.52]    [c.52]    [c.82]    [c.96]   
Электротехнические материалы (1976) -- [ c.52 ]

Электротехнические материалы Издание 3 (1976) -- [ c.52 ]



ПОИСК



Поверхностная волна вблизи плоской границы, характеризуемой нормальной проводимостью

Поверхностная проводимость протонов

Проводимость

Проводимость изоляции поверхностная

Стенание зарядов за счет поверхностной проводимости



© 2025 Mash-xxl.info Реклама на сайте