Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы численного решения краевых задач для систем обыкновенных дифференциальных уравнений

Рассматривая классический метод численного решения краевой задачи для системы обыкновенных дифференциальных уравнений, мы убедились, что для успешного решения необходимо,  [c.69]

Структура исходных уравнений нелинейной теории многослойных анизотропных оболочек довольно сложна, получить аналитическое решение уравнений (1.42), (1.43) непросто, позтому будем ориентироваться на их численное решение на ЭВМ, В последние годы самое широкое распространение и признание получила методика решения задач прочности оболочек вращения, согласно которой исходная система уравнений, описывающих напряженно-деформированное состояние конструкции в геометрически линейной постановке, сводилась к решению краевой задачи для нормальной системы обыкновенных дифференциальных уравнений. Этот прием в сочетании с методом ортогональной прогонки оказался настолько плодотворным, что проблема расчета осесимметричных оболочек вращения в классической постановке оказалась в основном завершенной [ 1.16].  [c.23]


Итак, исследование свободных колебаний конической ортотропной слоистой композитной оболочки сведено к интегрированию линейной краевой задачи на собственные значения для системы обыкновенных дифференциальных уравнений. Численное решение этой задачи получено по методу, разработанному в параграфе 7.3 при использовании ортонормированной координатной системы  [c.252]

Для построение трансформанты ядра интегрального уравнения, функции L(a), использовался численный алгоритм метода моделирующих функций [2, 7]. Устойчивость алгоритма достигалась за счет выделения в явном виде экспоненциальной составляющей в определяемом численно фундаментальном решении системы обыкновенных дифференциальных уравнений соответствующей краевой задачи. При этом  [c.200]

Математическое обеспечение метода ортогональной прогонки. Рассмотренный метод решения краевых задач и вычисления матриц жесткости для систем обыкновенных дифференциальных уравнений первого порядка основан на последовательном решении задач Коши, т. е. связан с численным интегрированием системы п обыкновенных дифференциальных уравнений первого порядка  [c.155]

Как правило, под такими методами подразумевают прежде всего какие-либо способы представления решений некоторого класса дифференциальных задач с начальными условиями или краевыми условиями в виде математических объектов с простой структурой в виде аналитической формулы, в виде некоторого интеграла от известной функции — квадра,туры, достаточно быстро сходящегося или носящего асимптотический характер ряда с последовательно вычисляемыми коэффициентами. В первых двух случаях, пользуясь стандартными методами численного анализа, можно при любом фиксированном наборе входных параметров получить решение с заданной степенью точности за очень малое время ЭВМ, иногда это удается сделать и в третьем случае. Часто в первых двух случаях или в случае сходящегося ряда говорят о построенных точных решениях. В последнее время под термином получено точное решение понимают и ситуацию, когда задача сведена к интегрированию системы небольшого количества обыкновенных дифференциальных уравнений при условии отсутствия особенностей (конечный промежуток интегрирования, достаточно гладкие коэффициенты и т. п.). Такого типа задачи можно практически с произвольной точностью (снова при фиксированном наборе входных параметров) решить на ЭВМ с помощью стандартных численных методов за сравнительно короткое время.  [c.14]


Заметим, что форма (1.40) есть аналитическое решение линейной задачи, а схема решения краевой задачи (1.46) — численное определение начальных и, если требуется, конечных параметров. Теоретически определение граничных параметров линейной системы из уравнения (1.46) можно выполнить аналитически, но целесообразней применять численный метод исключения Гаусса, т.к. трудности аналитического решения резко увеличиваются с ростом порядка матригцз А. Поэтому данное сочетание задачи Копти и численного решения краевой задачи позволяют определить предложенный одномерный вариант МГЭ как численно-аналитический метод решения дифференциальных уравнений независимо от физического содержания задачи. Если требуется решить задачу для линейной системы, состояние каждого элемента которой описывается обыкновенным дифференциальным уравнением, то всегда можно применить предложенный выше алгоритм. Если состояние элементов описывается дифференциальными уравнениями в частных производных(пластинчатые и оболочечные системы), то для применения одномерного варианта МГЭ нужны дополнительные преобразования, сводящие дифференциальные уравнения в частных производных к обыкновенным дифференциальных уравнениям. В математике, как известно, возможность понижения мерности исходной задачи существует. В механике такую процедуру выполняет вариационный метод, предложенный с разных позиций вьщающимися советскими учеными академиком Л.В. Канторовичем и членом-корреспондентом АН СССР В.З. Власовым, который носит их имя.  [c.390]

Представленный нелинейш,ш гидродинамический процесс является многопараметрическим, и его численному моделированию должен предшествовать подробный качественный анализ, который и составляет предмет данного исследования. Это тем более оправдано, что практика численных расчетов разрывных течений доставляет, как известно, осциллирующие решения, которые нуждаются в однозначной физической интерпретации. А именно требуется обнаружить существенные черты исходной задачи, являющиеся причинами нелинейных колебаний в гидродинамической системе. Для исследования краевой задачи (3.6)-(3.14) применяем подход, связанный с приближенным описанием течения с помощью конечномерных динамических систем. Воспользуемся методом Бубнова-Галеркина [112], который приводит исходную задачу к системе обыкновенных дифференциальных уравнений для существенных степеней свободы. Это дает возможность изучрггь бифуркационные ситуации и установить пороги возникновения автоколебаний.  [c.88]

В пятидесятых годах решение прямой задачи начинает внедряться в практику расчета и проектирования турбомашин и получает многочисленные примеры применения. Решение задачи относительно составляющих скоростей производится обычно по методу прямых и сводится к последовательности краевых задач для системы обыкновенных дифференциальных уравнений в естественной сетке с использованием кривизн (Г. Ю. Степанов, 1953, 1962) или в нолуфиксированной и в фиксированной сетках (Л. А. Симонов, 1950, 1957 Я. А. Сироткин, 1959—1963 Н. И. Дураков и О. И. Новикова, 1963 М. И. Жуковский, 1967). Решение задачи относительно функции тока получается методом сеток (Г. И. Майкапар, 1958 Я. А. Сироткин, 1964) или вариационным методом Галеркина (П. А. Романенко, 1959). Во всех случаях из-за нелинейности задачи применяются последовательные приближения, причем их сходимость проверяется или достигается (путем выбора шагов сетки или весовых коэффициентов) с помощью численного эксперимента. Расчеты в общей постановке задачи оказываются весьма трудоемкими и ориентируются в основном на применение современных ЭЦВМ.  [c.148]


Смотреть страницы где упоминается термин Методы численного решения краевых задач для систем обыкновенных дифференциальных уравнений : [c.184]   
Смотреть главы в:

Статика и динамика тонкостенных оболочечных конструкций  -> Методы численного решения краевых задач для систем обыкновенных дифференциальных уравнений



ПОИСК



I краевые

Me численные (см. Численные методы)

Дифференциальные системы

Дифференциальные уравнения обыкновенные

Задача и метод

Задача краевая

Задачи и методы их решения

Задачи краевые - Решении

Краевой решение

Луч обыкновенный

Метод дифференциальный

Метод решения уравнений

Метод систем

Метод численного решения уравнений

Методы Уравнения дифференциальные

Методы решения краевых задач

Методы решения краевых задач численные

Методы решения обыкновенных дифференциальных уравнений

Методы решения уравнений и систем

Методы численные

Методы численные (см. Численные методы)

Методы • решения численные

О краевых задачах для системы (7.27а)

Обыкновенные дифференциальные

Решение дифференциального уравнения

Решение краевых задач для обыкновенных дифференциальных уравнений

Решение обыкновенных дифференциальных уравнений

Решение системы

Решение системы дифференциальных уравнений

Решения метод

Решения уравнения (системы)

Ряд Ли как решение системы обыкновенных дифференциальных

Система дифференциальных уравнений

Уравнение метода сил

Численное решение задачи

Численное решение системы уравнений

Численное решение уравнений

Численные решения



© 2025 Mash-xxl.info Реклама на сайте