Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геометрические законы отражения и преломления волн

Геометрические законы отражения и преломления волн  [c.402]

Найдем теперь волновые векторы отраженной и прошедшей волн. Формулы, определяющие эти векторы, называются геометрическими законами отражения и преломления волн. Они определяют направления распространения отраженной и прошедшей волн, а в случае их неоднородности также и затухание в пространстве.  [c.403]

Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, то отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики.  [c.194]


Волны растяжения возникают в объектах типа стержня. Тогда частицы колеблются вдоль направления распространения волн и перпендикулярно к нему. Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, го отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики. Свойства упругих волн учитываются при разработке технологии и средств контроля изделий.  [c.58]

Гамма-излучение 9, 10 Генерация волн суммарной и разностной частот 732 гармоник 728, 733 Геометрические законы отражения и преломления 403, 513 на границе металла 444  [c.744]

Это выражение (2.8) обычно называется в оптике законом Снеллиуса. Хорошо известно, что законы отражения и преломления световых волн служат основой геометрической оптики. Мы видим, что в электромагнитной теории света эти законы получаются в самом общем виде без введения каких-либо специальных предположений, как следствие записанных выше граничных условий для уравнений Максвелла. Они справедливы для электромагнитных волн в любом диапазоне частот.  [c.82]

В отличие от геометрических законов, амплитуды отраженной и преломленной волн зависят от поляризации падающей волны. Из дальнейшего будет видно, что целесообразно раздельно рассматривать два случая, когда электрический вектор либо лежит в плоскости падения, либо перпендикулярен к ней. Другими словами, разложим амплитуды Ei, Ег, Еа на компоненты Е и Ej , лежащие соответственно в плоскости падения и перпендикулярные к ней  [c.474]

Распространение упругих высокочастотных волн происходит по аналогии с законами геометрической оптики, т.е. по законам отражения и преломления света. Если между искательной головкой и поверхностью контролируемой детали из стали будет воздушной зазор, то от него отразится вся энергия упругих волн. Зазор между преобразователем и контролируемым изделием должен быть заполнен контактной жидкостью. Для этого между искательной головкой и проверяемой деталью наносят тонкий слой минерального масла, что позволяет ввести в металл 10... 12% излучаемой головкой энергии.  [c.286]


В настоящей главе мы рассмотрим вопрос о распространении света сквозь границу двух сред в рамках электромагнитной теории света. При этом мы должны, очевидно, не только обосновать упомянутые выше законы геометрической оптики, но и продвинуть исследование задачи об отражении и преломлении дальше, а именно, рассчитать амплитуды и фазы отраженных от границы раздела световых волн и волн, прошедших через границу раздела.  [c.470]

Вопросы, связанные с распространением волн в неоднородной среде, могут быть рассмотрены только в общих чертах, при помощи понятий, заимствованных из геометрической оптики. Если имеет место резкое изменение свойств среды на некоторой поверхности, то закон распространения волн, конечно, изменится. В случае, если размеры поверхности и ее радиус кривизны велики по сравнению с длиной волны, мы будем иметь дело с явлениями регулярного отражения и преломления, как и в оптике. Случаи настоящих разрывов непрерывности параметров среды, разумеется, не встречаются в действительной атмосфере, но теория практически останется прежней, если изменения свойств будут происходить на расстоянии, малом по сравнению с длиной волны.  [c.274]

Геометрическая оптика, отвлекаясь от волновой природы света, описывает его распространение с помощью лучей. При этом оказывается, что поведение лучей при Я. 0 определяется теми же законами, что и для плоских волн законы преломления и отражения, установленные для плоской волны, падающей на плоскую границу раздела, справедливы в приближении геометрической оптики при более общих условиях. Например, при падении луча на поверхность линзы направление, интенсивность и состояние поляризации отраженного и преломленного лучей можно найти из соответствующих формул для плоских волн.  [c.329]

Возможны две точки зрения на место геометрической оптики в системе современных оптических представлений. Согласно первой из них геометрическая оптика рассматривается как самостоятельный раздел оптики, основанный на определенной системе постулатов. К наиболее важным из них относятся законы прямолинейного распространения света, законы его отражения и преломления. В такой постановке геометрическая оптика является основой вычислительной оптики [11], на базе которой осуществляются расчеты разнообразных оптических элементов и систем. Согласно второй точки зрения основные выражения и соотношения аппарата геометрической оптики являются по своей сути приближенными решениями волновых уравнений, во многих случаях облегчающих их анализ. Исходя из целевой установки данной книги мы будем придерживаться второй точки зрения. При этом сосредоточимся на вопросах распространения света в неоднородной среде, показатель преломления которой плавно меняется в пространстве. Световое поле представляется в форме локально плоской волны. В приближении геометрической оптики амплитуда этой волны не зависит от частоты, а частота, которая считается большой величиной, входит только в фазовый множитель.  [c.35]

Рассеяние предельно большими частицами. Основная особенность описания рассеяния большими частицами состоит в том, чта взаимодействие оптического излучения в этом случае можно рассматривать как два независимых явления 1) как дифракцию волн обусловленную разрывом волнового фронта частицей и (по принципу Гюйгенса) появлением определенного углового распределения интенсивности 2) как отражение и преломление лучей по законам геометрической оптики.  [c.25]

Геометрическая оптика работает с лучами света, которые могут быть представлены на чертеже прямыми линиями. Она обеспечивает, как известно, большую наглядность при использовании законов преломления и отражения на границах раздела,, например для случая зеркал и линз с искривленными поверхностями. Здесь уже был использован этот наглядный способ, например в гл. 2 при анализе отражения и преломления. При этом нужно только учитывать, что ранее не принималось во внимание такое важное свойство и световой, и звуковой волны, как ее структура.  [c.63]


Далее будет показано, что для коротких длин воли общий характер поля такой же, как и в случае плоской волны более того, законы преломления и отражения, установленные для плоской волны, падающей на плоскую границу, остаются в приближении геометрической оптики справедливыми и при более общих условиях. Следовательно, если на резкую границу (например, поверх-  [c.116]

В такой первоначальной форме принцип Гюйгенса говорит лишь о направлении распространения волнового фронта, который формально отождествляется с геометрической поверхностью, огибающей вторичные волны. Таким образом, речь идет собственно о распространении этой поверхности, а не о распространении волн, и выводы Гюйгенса относятся лишь к вопросу о направлении распространения света. В таком виде принцип Гюйгенса является, по существу, принципом геометрической оптики и, строго говоря, может применяться лишь в условиях пригодности геометрической оптики, т. е. когда длина световой волны бесконечно мала по сравнению с протяженностью волнового фронта. В этих условиях он позволяет вывести основные законы геометрической оптики (законы преломления и отражения). Рассмотрим для примера преломление плоской волны на границе двух сред, причем скорость волны в первой среде обозначим через 01, во второй — через  [c.19]

Зеркальное О. с. характеризуется связью положений падающего и отражённого лучей 1) отражённый, преломлённый и падающий лучи и нормаль к плоскости падения компланарны 2) угол падения равен углу отражения. Совместно с законом прямолинейного распространения света эти законы составляют основу геометрической оптики. Для понимания физ. особенностей, возникающих при о. с., таких, как изменение амплитуды, фазы, поляризации света, используется эл.-магн. теория света, в основе к-рой лежат ур-ния Максвелла. Они устанавливают связь параметров отражённого света с оптич. характеристиками вещества — оптич. постоянными пик, составляющими комплексного показателя преломления п = п — гх п— отношение скорости в вакууме к фазовой скорости волны в веществе, и — гл. безразмерный показатель поглощения. Параметры отражённого света могут быть получены из ур-ния волны, к-рое удовлетворяет решению ур-ний Максвелла  [c.510]

Законы преломления и отражения ультразвуковых волн аналогичны законам геометрической оптики. Если продольная волна падает перпендикулярно к плоской границе раздела двух сред, обладающих разными акустическими сопротивлениями, то часть энер-  [c.118]

ИЛИ твердого тела и жидкости, имеющих различные акустические сопротивления, по законам геометрической оптики при этом может возникнуть явление преобразования одних волн в другие. Например, при падении продольной волны L на границу раздела двух твердых сред под углом , отличным от прямого, в самом общем случае возникают еще четыре волны (рис. 74,а) две отраженных (продольная L и поперечная Т ) и две преломленных (продольная L" и поперечная Т"). Углы преломления и отражения волн связаны с углом падения законом Снеллиуса  [c.155]

Пусть плоская волна падает из вакуума (или воздуха) на границу оптически одноосной анизотропной однородной среды, занимающей верхнее полупространство (рис. 4.10). Рассмотрим частный случай оптическая ось параллельна границе ху и перпендикулярна плоскости падения хг (т.е. параллельна оси у). Падающую волну разложим на составляющие, поляризованные в плоскости падения и в перпендикулярном направлении. Граничные условия, как и для изотропной среды, выражаются уравнениями (3.1). Чтобы эти условия выполнялись сразу во всех точках границы, у всех трех экспонент зависимость от координат х и у должна быть одинакова. Отсюда, во-первых, следует, что у волновых векторов к и кг отраженной и преломленной волн равны нулю у-составляю щие, т. е. нормали к волновым поверхностям отраженной и преломленной волн лежат в плоскости падения. Во-вторых, из равенства л -составляюших векторов ко, к и кг следуют геометрические законы отражения и преломления, определяющие направления этих волн. Так как/г()х = (ы/с)8 Пф, /г = (ш/с)51пф , то ф1=ф угол отражения ф1 от анизотропной среды равен углу падения ф.  [c.187]

Геометрические законы отражения и преломления, однако, совершенно не. зависят от физической природы волн и от конкретногй механизма отражения, и преломления.  [c.25]

К обеим волнам применимы все рассуждения, которыми мы пользовались при выводе геометрических законов отражения и преломления (см. 64). Но в кристаллах они относятся к волновым нормалям, а не к световым лучам. Волновые нормали отраженЕюй обеих преломленных волн лежат в плоскости падения. Их направ-  [c.459]

О проводится полуокружность радиусом ОС = U2M ( где М — время, которое должна была затратить волна, чтобы пройти путь АВ в первой среде). Очевидно, что АВ = ujAt и ОС = uz/u )AB. Ту же операцию можно повторить для точек 0 , О и т.д. Огибающей всех этих полуокружностей служит прямая BD, перпендикуляр к которой (луч) составляет угол ф2 с нормалью к границе раздела. Отсюда получаются законы отражения и преломления световых волн, и, следовательно, из принципа Гюйгенса можно вывести законы геометрической оптики. Вопрос о том, почему этот принцип (без дополнений, сделанных Френелем) нельзя положить в основу волновой оптики, подробно рассмотрен в гл. 6.  [c.132]

При распространении звуковых волн имеют место обычные для всех типов волн явления интерференции и дифракции. В случае когда размер препятствий и неоднородностей в среде велик по сравнению с длиной волны, расиростраиение 3. подчиняется законам отражения и преломления лучей и может рассматриваться с позиций геометрической акустики. По мере распространения волны происходит постепенное затухание звука, т. е. умопыкение его интенсивности и амплитуды с расстоянием, к-рое обусловливается как законами волнового распространения в среде, так и необратимым переходом звуковой анергии в др. форму (гл. обр. в теплоту).  [c.70]


Геометрическое место точек, в которых аргумент 2я имеет одно и то же значение в момент I, называется поверхностью волны. Поверхность волны ортогональна световым лучам, испускаемым источником света это свойство остается в силе и после любого числа преломлений и отражений, как это вытекает из теоремы Малюса. Переход от волновой теории света к лучевой , т. е. к геометрической оптике, опирается на упомянутое соответствие между лучами и поверхностью волны. Для того чтобы совершить этот переход и вывести из теории распространения волн основные законы геометрической оптики (прямолинейность распространения света, законы отражения и преломления света и т. д.), а также вычислить распределение энергии в пятне рассеяния даваемом реальной оптической системой вместо идеального, геометрического изображения, нужно применить следующие положения принципа Гюйгеиса—Френеля.  [c.599]

Перейдем от законов геометрической оптики к законам геометрической теории дифракции. Отличие их состоит в том, что в ГТД наряду с отражением и преломлением постулируются еще другие способы образования лучей. Во всех случаях, когда при падении первичного поля на тело (или граиицу раздела) возникает граница тень—свет для геометрооптических волн, т. е. когда геометрооптическое решение претерпевает разрыв, постулируется образование дополнительных дифракционных полей, компенсирующих эти разрывы. Лучи этих полей порождаются лучами первичного поля, касающимися тела или попадающими на изломы поверхности тела (ребра, острия). Иным словами, в ГТД по сравнению с ГО расширяется вторая группа законов первая группа сохраняется в ГТД лолностью без изменений и дополнений. Дополнительные специфические для ГТД законы во многом схожи с перечисленными законами ГО второй группы. Всего имеется четыре дополнительных закона два первых определяют направления дифракционных лучей, а два других — их амплитуды. Запишем сначала два первых закона,  [c.14]

В качестве простейшего примера неоднородной среды рассмотрим многослойную область (мультислой) с кусочно-постоянным (ступенчатым) законом изменения показателя преломления. В разд. 3.2 мы уже обсуждали обобщение метода геометрической оптики на неоднородный диэлектрик с непрерывным профилем показателя преломления сущностью этого анализа была основанная на свойствах функщ1й Эйри возможность сшивки асимптотических решений. При наличии у показателя преломления разрывов непрерывности можно также применить этот метод, учитывая, однако, некоторые небольшие изменения в выражениях для коэффициентов отражения и пропускания. Если же в задаче возникает большое число разрывов функции л (г), то описание многократного отражения проходящей через среду волны становится очень сложным. Для этого требуется систематическое изучение зависимости коэффициентов отражения и пропускания от числа разрывов, их характера и относительных положений разрывов непрерывности л (г).  [c.170]

Главные особенности процесса распространения сейсмических волн, которые наблюдались экспериментально, можно было предсказать на основе идеально упругой модели Земли. Законы отражения, Преломления объемных волн и дисперсия поверхностных волн могут быть выведены с помощью уравнений упругости для сред с границами, выбранными с учетом имеющихся представлений о разрезе Земли. Однако имеются отличия между наблюдениями и теоретическим предсказанием, главное из которых состоит в более сильном уменьшении амплитуды наблюденных волн, чем это вытекает из геометрического расхождения и отражений на границах. Это дополнительное уменьшение амплитуды мы будем называть поглощением. Цель этой главы —обзор экспериментальных данных о Природе поглощения в горных породах и обсуждение некоторых теоретических моделей, предлагавшихся с целью генерализации экспериментальных данных и объяснения механизмов потери энергии. Ряд исследователей рассматривали эту проблему с почти одних и тех же позиций (21, 74, 1О0]. Недавнее собрание наиболее значительных трудов, снабженных прекрасными комментариями от редакторов [78], показывает современное состояние Проблемы поглощения сейсмических волн. Поскольку эта публикация и прекрасный обзор, выполненный Мавко и Нуром [100], содержат достаточно полную библиографию, в нашем изложении мы постараемся коснуться только наиболее полезных концепций и соотношений без детальных ссылок на литературные источники.  [c.90]

ПРЕЛОМЛЕНИЕ ЗВУКА - - изменение направления распространения звуковой волны при прохождении её через границу двух сред с различными скоростями звука. Термин П. з. применим в случаях, когда поведение волн удовлетворяет законам геометрической акустики, и П. з. можно рассматривать, как преломление звуковых лучей. При преломлении выполняется закон Снеллиуса (см. Отражение звука) (со80 )/с = (соз0)/с, где  [c.267]


Смотреть страницы где упоминается термин Геометрические законы отражения и преломления волн : [c.471]    [c.473]    [c.474]    [c.848]    [c.260]    [c.113]    [c.497]    [c.80]    [c.162]    [c.5]    [c.255]    [c.89]    [c.419]    [c.219]    [c.490]   
Смотреть главы в:

Общий курс физики Оптика Т 4  -> Геометрические законы отражения и преломления волн



ПОИСК



Волны, преломление

Геометрические законы отражения

Геометрические законы отражения преломления

Закон отражения волн

Закон преломления

Закон преломления волн

Законы отражения и преломления

Отражение

Отражение волн

Отражение закон

Отражение и преломление волн

Отражение. Преломление

Преломление



© 2025 Mash-xxl.info Реклама на сайте