Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы отражения и преломления

Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, то отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики.  [c.194]


Как известно, (3.9) и (3.10) есть законы отражения и преломления света. Следовательно, предположение трех плоских монохроматических волн, а также учет граничного условия дают возможность вывести известные из опытных данных законы отражения и преломления, прийти к выводу о равенстве фаз и частот всех трех волн на границе раздела .  [c.48]

По-прежнему ограничимся случаем плоских волн. Рассмотрим нормальное падение волны на границу раздела, а затем исследуем наклонное падение и выведем законы отражения и преломления электромагнитных волн. Введем основные понятия и обозначения и получим фазовые и амплитудные соотношения на границе раздела двух диэлектриков (формулы Френеля). Используя полученные соотношения, решим ряд задач, научное и прикладное значение которых весьма велико. Распространяя метод на случай границы раздела диэлектрик — проводник, получим основные сведения об электромагнитной волне в проводящей среде. В заключение рассмотрим возникновение светового давления. Таким образом еще раз убедимся, что теория Максвелла позволяет получить информацию о весьма разнообразных физических явлениях.  [c.71]

ЗАКОНЫ ОТРАЖЕНИЯ И ПРЕЛОМЛЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН  [c.79]

Проведем теперь предварительное исследование общего случая. Электромагнитная волна падает под произвольным углом на границу раздела двух сред. В данном параграфе не используются соотношения между амплитудами напряженности электрического и магнитного полей на границе сред, а будут лишь записаны исходные уравнения, из анализа которых сразу можно получить законы отражения и преломления электромагнитных волн.  [c.79]

Это выражение (2.8) обычно называется в оптике законом Снеллиуса. Хорошо известно, что законы отражения и преломления световых волн служат основой геометрической оптики. Мы видим, что в электромагнитной теории света эти законы получаются в самом общем виде без введения каких-либо специальных предположений, как следствие записанных выше граничных условий для уравнений Максвелла. Они справедливы для электромагнитных волн в любом диапазоне частот.  [c.82]

В этом случае для получения двух систем волн используют законы отражения и преломления. Обычно наблюдается интерференция между волнами, исходящими из действительного и мнимого изображений источника, или между волнами, расходящимися из двух мнимых изображений. Такое различие несущественно — волна, исходящая из реального источника, с помощью оптического устройства разделяется на две световые волны, интерферирующие в некоторой области. Использование мнимых изображений служит лишь удобным способом определения области перекрывания волн, где можно наблюдать интерференцию.  [c.194]


Получите законы отражения и преломления электромагнитной волны.  [c.455]

В предшествующем изложении мы неоднократно использовали законы отражения и преломления света, установленные на основе опытных данных.  [c.470]

Мы воспользуемся последним методом, поскольку он позволяет просто найти направление распространения, амплитуды и фазы отраженной и преломленной волн, т. е. теоретически вывести законы отражения и преломления световых волн. При этом способе, однако, вопрос о связи между показателем преломления и свойствами атомов, составляющих среду, остается открытым.  [c.471]

В гл. 2 уже рассматривались основные законы оптики — законы отражения и преломления света. Пользуясь принципом Гюйгенса, мы дали формулировку законов и определили направление распространения отраженной п преломленной волн. Однако такие важные вопросы, как интенсивность и поляризация отраженной и преломленной волн, фазовые соотношения на границе раздела двух сред и некоторые другие, остались без рассмотрения. Собственно говоря, ответ на эти вопросы нельзя дать, поскольку принцип Гюйгенса позволяет определить только направление распространения фронта волны, ничего не говоря о других характеристиках воли.  [c.11]

Рис. 16.6. К выводу законов отражения и преломления электромагнитных волн Рис. 16.6. К выводу <a href="/info/10245">законов отражения</a> и преломления электромагнитных волн
Выбор между корпускулярной теорией и волновой теорией света не может быть сделан на основании изучения одних только траекторий световых лучей. Законы отражения и преломления могут быть получены и из чисто механических соображений. Однако в корпускулярной теории закон преломления получается в виде  [c.313]

Лишь в одном пункте Пуассон рассматривает вопрос о принципе наименьшего действия с иной точки зрения. Как мы уже отмечали, оптический аспект принципа у Лагранжа отсутствовал. Напротив, именно Лаплас — непосредственный учитель Пуассона —применил рассматриваемый принцип для вывода закона двойного преломления света в исландском шпате. По этому поводу Пуассон замечает, что наиболее замечательным применением принципа является вывод из него законов отражения и преломления света.  [c.804]

Теорему Малюса можно рассматривать с трех различных точек зрения во-первых, исходя из опытных законов отражения и преломления, во-вторых, исходя из принципа Ферма или принципа наименьшего действия и, наконец, в-третьих, исходя из волновой теории, в которой согласно построениям Гюйгенса—Френеля волновой фронт нормален к лучу.  [c.806]

Геометрическая оптика изучает пучки лучей света, исходя из законов прямолинейности и независимости их распространения и из законов отражения и преломления света. Так как при больших углах падения в оптических системах возникают оптические аберрации, то простейшие оптические системы целесообразно использовать только в параксиальной области, близкой к оптической оси, где углы падения и преломления могут считаться достаточно малыми. Последующий материал дан применительно к этому случаю.  [c.228]

Отсюда следуют законы отражения и преломления, согласно к-рым 1) волновые векторы падающей к , отражённых и преломлённых к( волн и нормаль  [c.504]

ЗАКОНЫ ОТРАЖЕНИЯ И ПРЕЛОМЛЕНИЯ  [c.67]

Предположим, что электромагнитная плоская волна, распространяющаяся в среде 1 в направлении fii, падает на поверхность раздела между средами-1 и 2 под. углом падения 0i (острый угол между направлением распространения Qi и нормалью к поверхности раздела). Часть излучения будет отражаться, а остальная часть будет распространяться в среде 2 в направлении Q2 под углом преломления 62 (острый угол между направлением Q2 и нормалью к поверхности раздела). На фиг. 2.1 показаны углы падения 0] и преломления 02. Если поверхность раздела является идеальной,- то законы отражения и преломления могут быть выведены из уравнений Максвелла.  [c.67]


Законы отражения и преломления 67 Замкнутая система, определение 171 -- с диффузно отражающими поверхностями 174, 195 ---зеркально и диффузно отражающими поверхностями 182 --серых тел 178, 179, 198  [c.606]

Опираясь на свой принцип, Гюйгенс успешно объяснил явление двойного лучепреломления (удвоение луча при прохождении через кристалл), об-наружешюе в 1670 г. Бартолиии в ислаидском шпате. Принцип Гюйгенса позволяет также объяснить законы отражения и преломления света.  [c.5]

Вывод законов отражения и преломления. Если волновой вектор падающей волны лежит в плоскости Х2 , то feJJ = О  [c.47]

С некоторыми, установленными еще с древних времен законами геометрической оптики (ирямол1П1ейного распространения, отражения и преломления света, суиернозиции) мы уже познакомились во введении. Законы отражения и преломления света были подробно проанализированы с точки зрения волновой теории (формулы Френеля). Рассмотрим теперь некоторые другие важнейшие законы геометрической оптики и их применения.  [c.166]

О проводится полуокружность радиусом ОС = U2M ( где М — время, которое должна была затратить волна, чтобы пройти путь АВ в первой среде). Очевидно, что АВ = ujAt и ОС = uz/u )AB. Ту же операцию можно повторить для точек 0 , О и т.д. Огибающей всех этих полуокружностей служит прямая BD, перпендикуляр к которой (луч) составляет угол ф2 с нормалью к границе раздела. Отсюда получаются законы отражения и преломления световых волн, и, следовательно, из принципа Гюйгенса можно вывести законы геометрической оптики. Вопрос о том, почему этот принцип (без дополнений, сделанных Френелем) нельзя положить в основу волновой оптики, подробно рассмотрен в гл. 6.  [c.132]

Соотношения (6.15) и (6.18) оказались полезными для решения сложных задач о распространении света в оптически неоднородной среде. В более простых случаях обычно оказывается достаточным использование только законов отражения и преломления света. При этом для описания условий фокусировки световых пучков и построения изображений применяют некоторые приемы, которые упрощают решение типовых задач. В развитие геометрической оптики суштетвенный вклад внес знаменитый  [c.277]

В самом начале XIX в. было введено понятие об инфракрасных и ультрафиолетовых лучах. Наличие инфракрасных волн было уста-г новлено в 1800 г. Герщелем, наблюдавшим нагревание чувствительного термометра, на который падало излучение Солнца с длинами волн, лежащими за красным концом спектра. Гершель обнаружил также, что эти лучи подчиняются таким же законам отражения и преломления, как и видимый свет.  [c.400]

При рассмотрении различных вопросов оптики мы до сих пор не обращали внимания на взаимодействие световой волны со средой, в которой она распространяется. Формулируя, например, законы отражения и преломления света, мы основывались только на опытных данных. Однако эти законы, давая правильный ответ на вопрос о направлении отраженной и нрело.мленной волн, ничего не говорят об интенсивности и фазе отраженного и преломленного света. Для ответа на данные вопросы необходимо знать, каким образом влияет на световую волну вещество тех сред, через которые проходит волна. Это можно сделать, исходя из электромагнитной природы света и представлений о веществе как о системе электрических зарядов.  [c.3]

Более общий подход к изучению законов отражения и преломления электромагнитной волны может быть осуществлен на основе уравнений Максвелла (см. 2.1). Однако уравнения Максвелла были выведены для областей пространства, в которых физические свойства среды (характеризующиеся величинами е и р) непрерывны. В оптике же часто встречаются случаи, когда эти свойства резко меняются на одной или нескольких поверхностях, поэтому необходимо вводить граничные условия. Выше мы отмечали (см. 2.1), что при отсутствии поверхностных токов и свободных поверхностных зарядов на границе раздела уравнения Максвелла должны удовлетворять гранич[1ым условиям, т. е. равенству тангенциальных составляющих векторов Е и Н. Отношение нормальных составляющих обратно пропорционально соответствующим значениям е или р, т. е. г Ет = г2Е2п, р Ящ = ргГ/гп- Так как в оптике обычно Р1 = Ц2=Г то нор.мальные составляющие вектора Н равны Я]т =//2)2.  [c.11]

Законы отражения и преломления. Если на границу раздела двух сред с зазными оптическими свойствами падает плоская волна, то она делится иа две волны отраженную и проходящую во вторую среду (преломленную). Таким образом, электромагнитное поле в первой среде образуется из поля падающей и отраженной волн, а во второй — из поля преломленной волны.  [c.12]

Впервые эти закономерности были установлены в начале XIX в. Aparo и Френелем. Принципиальное значение этих опытов состояло тогда в том, что они однозначно доказывали строгую поперечность световых волн и отсутствие продольной компоненты. Этот вывод, естественный с точки зрения электромагнитной теории, был сделан в свое время Юнгом и Френелем еще для упругой теории света и приводил к очень серьезным трудностям. Гипотеза о существовании среды, дающей строго поперечные колебания и не допускающей продольных, несовместима с представлением об обычной упругой среде, что заставило для понимания законов отражения и преломления света делать предположения, противоречащие механике обычных сред. В частности, Френель высказал гипотезу о том, что при переходе из одной среды в другую свойства эфира в этих средах изменяются таким образом, что его упругость остается неизменной и, следовательно, плотность меняется прямо пропорционально квадрату показателя преломления среды. Наличие данной гипотезы позволило Френелю решить задачу о соотношении между амплитудами падающей, отраженной и преломленной волн (формулы Френеля).  [c.49]


При распространении звуковых волн имеют место обычные для всех типов волн явления интерференции и дифракции. В случае когда размер препятствий и неоднородностей в среде велик по сравнению с длиной волны, расиростраиение 3. подчиняется законам отражения и преломления лучей и может рассматриваться с позиций геометрической акустики. По мере распространения волны происходит постепенное затухание звука, т. е. умопыкение его интенсивности и амплитуды с расстоянием, к-рое обусловливается как законами волнового распространения в среде, так и необратимым переходом звуковой анергии в др. форму (гл. обр. в теплоту).  [c.70]

Из законов отражения и преломления звука и граничных условий И. М. Халатниковым пол>т1еио след, выражение для еопротивления Капицы на ) рапице Не твёрдое тело  [c.241]


Смотреть страницы где упоминается термин Законы отражения и преломления : [c.4]    [c.80]    [c.277]    [c.275]    [c.389]    [c.471]    [c.473]    [c.474]    [c.848]    [c.116]    [c.314]    [c.319]    [c.159]    [c.42]    [c.505]    [c.11]   
Смотреть главы в:

Сложный теплообмен  -> Законы отражения и преломления


Сложный теплообмен (1976) -- [ c.67 ]



ПОИСК



Геометрические законы отражения и преломления волн

Геометрические законы отражения и преломления света на границе металла

Геометрические законы отражения преломления

Закон отражения, преломления, обратимости

Закон преломления

Закон преломления для плоских волн, преобразование моды. ЗЭ Значения звукового давления при отражении и преломлении

Законы отражения и преломления электромагнитных волн

Общие законы преломления и отражения

Основные определения Закон преломления и отражения. Принцип взаимности

Отражение

Отражение волны от полупространства с линейным законом для квадрата показателя преломления

Отражение закон

Отражение и преломление света на границе Законы отражения и преломления света

Отражение плоской волны от полупространства с линейным законом для квадрата показателя преломления

Отражение. Преломление

Плотности потоков энергии. Коэффициент отражения. Коэффициент пропускания. Закон сохранения энергии. Поляризация света при отражении и преломлении Распространение света в проводящих средах

Преломление

Принципы Гюйгенса и Гюйгенса — Френеля. Законы отражения и преломления волн. Дифракция

Системы лучей, законы отражения и преломления, теорема Малюса



© 2025 Mash-xxl.info Реклама на сайте