Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Керамические материалы и их применение

Керамические материалы и их применение в санитарно технических устройствах  [c.52]

Керамические материалы и их применение  [c.51]

Далее мы предположим, как это делается в теории регулярного режима, что какие бы то ни было источники тепла в теле отсутствуют. В применении к конкретным практическим случаям это означает, что нет искусственно питаемых нагревателей или охлаждаю-Щ.ИХ приспособлений ни внутри тела ни на наружных его границах, что в нем не происходят параллельно с изменением температур еще сопутствующие процессы, сопровождающиеся выделением или поглощением теплоты, например, испарение влаги или ее замерзание во влажных материалах, изменение структуры в сталях, в керамических материалах и т. п.  [c.167]


Керамические материалы не имеют связующей металлической фазы, что снижает их разупрочнение при перегреве и делает возможным их применение при высоких скоростях резания. Если предельная скорость резания для твердосплавного инструмента составляет 500—600 м/мин, то для керамического инструмента она увеличивается до 900—1000 м/мин. Недостатками керамических материалов являются их низкая прочность при изгибе (0,3— 0,35 ГПа), повышенная хрупкость и низкая теплопроводность.  [c.576]

Керамика, окислы. В технике очень важной задачей является соединение пайкой различного рода керамических материалов и окислов. Разрабатываются способы их взаимного соединения между собой и с металлами. При этом возможны разные случаи металлы более тугоплавки, нежели керамика, например фарфор металлы менее тугоплавки, нежели керамика, при этом соединение обоих элементов происходит в твердом состоянии, контакт обеспечивается необходимым давлением, применением покрытий. В последнем случае соединения происходят при температурах ниже температуры плавления каждого из соединяемых тел. Особенно  [c.127]

Газопламенное напыление. Отличительными особенностями этого метода по сравнению с электродуговым напылением являются использование газокислородного или газовоздушного пламени для нагрева напыляемого материала возможность нанесения покрытий не только из металлов и их сплавов, но также из керамических или полимерных материалов и их композиций применение напыляемых материалов в виде проволоки, жилки, прутка (стержня) или порошка.  [c.233]

Стена, охлаждаемая воздухом, не должна быть керамической. Наряду с хорошими огнеупорными свойствами керамические материалы, к сожалению, обладают рядом плохих свойств, делающих невозможным их применение в данном случае. Керамический воздухоподогреватель был бы недостаточно плотным, слишком тяжелым и не перенес бы резкого колебания температур. Поэтому стена камеры плавления, охлаждаемая воздухом, должна быть металлической, из жароупорной стали с большой присадкой легирующих материалов. Самую высокую допустимую температуру стены, которая по условиям образования шлакового покрытия составляет 900° С, современные материалы выдержать могут. При температурах между 900 и  [c.159]

Катапультируемые сиденья и капсулы самолетов В 64 D 25/10-25/12 Катапульты в пусковых устройствах на аэродромах или палубах авианосцев В 64 F 1/06 Катаракты в золотниковых распределительных механизмах F 01 L 27/04 Катки опорные для гусениц, размещение и модификация на транспортных средствах В 62 D 55/14-55/15 для перемещения и транспортирования подвижного состава по путям В 61 J 1/12) Катушки [индукционные систем зажигания в ДВС F 02 Р 3/02-3/055 В 65 Н <для накопления нитевидного материала во время подачи 51/22-51/24 намотка и хранение нитевидных материалов 54/02-54/553, 75/02 рулонные (держатели 16/02-16/08, 18/02-18/06 для непрерывной подачи лент с рулонов 16/10, 18/10-18/24, 20/36, 20/38 способы и устройства для смены 19/00-19/30)>] Катушки транспортные средства для их перевозки В 60 Р 3/035 для хранения нитевидных материалов, полотнищ, лент и т. п., способы изготовления В 65 Н 75/50 шлифование торцовых поверхностей В 24 В 24 7/16) Каучук сырой, обработка перед формованием В 15/02-15/06 как формовочный материал К 7 00-21 00, 103 00-103 08) В 29 Качающиеся шайбы, поршневые двигатели с качающимися шайбами F 01 В 3/02 Керамика механическая обработка В 28 D печи для обжига F 27 В 5/00 тара из керамики В 65 D 1/00, 13/02) Керамические [детали подшипников качения F 16 С 33/56, 33/62 изделия <В 28 В армированные, изготовление фасонные, производство 1/00-1/54) шлифование В 24 В 7/22, 9/06) массы, прессование В 28 В 3/00 трубы F 16 L (9/10 соединения 49/00) узоры, имитация В 44 F 11/06 формы, конвейеры для их применения В 65 G 49/08] Кернеры В 25 D 5/00-5/02 Кертиса турбины F 01 D 1/10 Кик-стартеры F 02 N 3/04 Кили самолетов и т. п. В 64 С 5/06  [c.92]


В перспективе намечается применение керамических материалов, что позволит увеличить температуру поверхности лопаток, КПД и мощность установки. Ведется работа по повышению надежности их изготовления, а также по улучшению таких параметров, как вязкость и коррозионная стойкость материалов.  [c.101]

С Свыше 180 Слюда, керамические материалы, стекло, кварц или их комбинации, применяемые без связующих или с неорганическими и элементоорганическими составами. Температура применения этих материалов определяется их физическими, химическими, ме> аническими и электрическими свойствами  [c.17]

Наилучшую совместимость по термическому расширению и наименьшие скорости окисления среди высокотемпературных керамических материалов имеют материалы на основе кремния. Поэтому большое число публикаций посвящено использованию материалов на основе кремния для долговременной защиты УУКМ. Однако верхний температурный предел их применения определен 1700... 1800 °С. При более высоких температурах рассматриваются покрытия на основе более тугоплавких элементов Ti, Zr, Hf.  [c.238]

Керамические материалы представляются наиболее перспективными для применения в условиях высоких температур и агрессивных сред. Их использование в подвижных сочленениях машин и механизмов ограничивается малой износостойкостью и высоким коэффициентом трения при отсутствии смазки. Коэффициент трения редко бывает ниже 0,2. Рядом авторов высказано предположение, что керамические материалы никогда не будут использоваться в узлах трения при отсутствии смазки. Вместе с тем конструктивные особенности таких распространенных в технике пар трения, как поршень — цилиндр двигателей, не позволяют обеспечить эффективное охлаждение и смазывание поверхностей трения.  [c.104]

Магнитные керамические материалы представляют большой интерес для ультразвуковой технологии. Установки с ферритовыми преобразователями могут найти широкое применение. Такие установки отличаются простотой, дешевизной, малыми габаритами. Это обстоятельство должно привести к расширению области применения ультразвуковой техники. Однако следует иметь в виду, что простая замена преобразователей из магнитострикционных металлических материалов ферритовыми в уже имеющихся установках недопустима. При конструировании установок с ферритовыми преобразователями необходимо учитывать их специфические особенности — высокую добротность и ограниченную механическую прочность. Первое свойство требует более тщательного согласования преобразователя с концентратором, чем для преобразователей из металлов в установках, предназначенных для работы с малой нагрузкой (типа установки ультразвукового резания, сварки), необходимо применение автоподстройки частоты питающего генератора.Относительно невысокая механическая прочность требует применения ограничителей по амплитуде, более тщательного выбора режима работы преобразователя. Однако эти дополнительные требования не снижают большой практической выгоды, которую дает применение таких преобразователей. Уже сейчас ясно, что ферритовые преобразователи во многих случаях могут успешно конкурировать даже с преобразователями из пьезоэлектрической керамики.  [c.147]

В учебном пособии, подготовленном большим коллективом специалистов, описываются новые материалы, получающие распространение в технике — пластмассы, каучуки, защитные покрытия, керамические материалы, стекло и стекловолокно, вяжущие материалы, металлокерамика, пол проводники, титановые, циркониевые и прочие новые сплавы. Приводится характеристика новых материалов, уже нашедших применение или перспективных, их свойства, способы и области применения.  [c.2]

В настоящее время еще сравнительно молодая отрасль производства пьезокерамических материалов интенсивно развивается. Усилиями физиков и технологов изыскиваются новые керамические материалы, которые обладали бы высокой точкой Кюри и стабильными диэлектрическими свойствами. Такие материалы уже разработаны на основе применения различных титанатов, цирконатов, ниобатов и других соединений и их смесей. Точка Кюри может быть повышена до 600° С и более. Колебание свойств пьезокерамических материалов весьма чувствительно даже к незначительному изменению состава массы, химическому составу сырья. Благодаря этому, меняя состав масс при различном соотношении исходных материалов, получают пьезокерамические материалы с различным значением диэлектрической проницаемости и точкой Кюри. В то же время такая чувствительность материала к изменению свойств вызывает большие трудности в технологии их изготовления.  [c.300]


Такой способ изготовления изделий может быть применен не только для тугоплавких металлов или их сплавов, по и к смеси их с керамическими материалами, а также для некоторых видов пластических масс, например фторопластов (см. раздел I).  [c.313]

В зависимости от применения керамические материалы подразделяются на строительную керамику (изделия для кладки стен и их облицовки, санитарно-технические узлы и т. д.) химически стойкие изделия, используемые для получения, транспортировки и хранения агрессивных веществ тонкую керамику специальную керамику огнеупорные изделия.  [c.98]

В книге дано описание физико-механических и технологических свойств новых материалов высоколегированных сталей и сплавов, тугоплавких металлов, сплавов циркония, полупроводниковых и полимерных, керамических и вяжущих материалов и т. д. Большое внимание уделено особенностям их получения и обработки, а также применению их в народном хозяйстве. Описа-, ны новейшие прогрессивные технологические процессы обработки металличе-ских, порошковых и полимерных материалов.  [c.2]

Не останавливаясь на рассмотрении классов сравнительно низкой нагревостойкости, отметим, что к классам от Y до Н принадлежат исключительно органические или элементоорганические полимеры и материалы на их основе. Высший класс нагревостойкости — класс С — образуют в основном чисто неорганические материалы без применения органических связующих или пропитывающих компонентов слюда, керамические материалы, стекла, ситаллы, асбест. Из органических и элементоорганических полимеров к классу нагревостойкости С могут быть отнесены лишь немногие, разработанные в последние годы кремнийорганические, некоторые фторорганические, полиимидные, ряд ароматических полиамидов и т. п. [13, 229].  [c.8]

В качестве защитных покрытий чаще всего применяют тугоплавкие и жаростойкие материалы. Под жаростойкими обычно подразумеваются такие материалы, которые обладают способностью противостоять при высокой температуре химическому воздействию, в частности окислению, на воздухе или в иной газовой среде. Работы по использованию жаростойких материалов в современной технике в последнее время ведутся по двум основным направлениям. Первое, основывающееся на многолетнем опыте применения различных материалов в качестве огнеупоров в металлургической, химической и других отраслях промышленности, сводится к использованию в конструкциях и аппаратах отдельных элементов, изготовленных целиком из жаростойких материалов. Примером практического применения таких элементов могут служить вкладыши ракетных двигателей, каналы магнитно-гидродинамических преобразователей тепловой энергии в электрическую и др. [29, 30]. Второе направление — применение жаростойких материалов в качестве защитных покрытий, способных предохранять различные изделия от перегрева и поверхностной и межкристаллитной коррозии. Примером использования жаростойких соединений в качестве защитных покрытий могут служить керамические намазки, часто армированные стеклотканью, наносимые на внутреннюю поверхность насадок для истечения продуктов горения ракетного топлива, силицидные мате риалы, закрепляемые на изделиях из тугоплавких металлов с целью предохранения их от коррозии, и др. [31, 32]. Оба направления усиленно развиваются. Однако здесь целесообразно ограничиться лишь некоторыми вопросами, относящимися ко второму направлению, а именно — рассмотрением свойств и оценкой отдельных материалов с точки зрения их пригодности для защитных покрытий.  [c.39]

Керамические материалы. Керамические материалы находят широкое применение в качестве изоляторов. Изоляторный фарфор относится к керамическим низкочастотным материалам. Его получают путем обжига специальной глины, кварцевого песка и щелочного полевого шпата. Другие разновидности фарфора (по степени улучшения их электрических свойств) радиофарфор и ультрафарфор. Последний является высокочастотным диэлектриком с малыми диэлектрическими потерями и высокой механической прочностью. Получают ультрафарфор на основе корунда (высокотемпературной а-модификации окиси алюминия).  [c.256]

ПОЗВОЛЯЮТ увеличить срок службы керамических подшипников по сравнению со стальными в 100 раз и работать при этом без смазки. Химическая инертность, радиационная устойчивость, высокие диэлектрические свойства и отсутствие магнетизма у керамических материалов позволяют использовать подшипники из них в аппаратах химических производств, атомных, силовых установках, а также в установках, где требуется наиболее надежная электрическая изоляция. Наибольший эффект использования керамических подшипников дает их применение в точных и навигационных приборах, в оборонной промышленности, например в гироскопах, а также в высокооборотных машинах — турбинах, компрессорах, обра-батываюш их центрах [2].  [c.752]

Применение композиционных оболочек, за исключением тех, которые уже рассматривались в разделах, касающихся топливных элементов и замедлителей, ограничено в основном керамическими материалами, такими, как керметы 81С — 31, А120а — Сг, MgO — — N1 и т. п. Высокая температура плавления больпшнства керме-тов вполне позволяет использовать их в этих целях. Однако свойственные им низкая теплопроводность, плохое сопротивление тепловому удару и плохое сопротивление термическим напряжениям значительно снижают их эффективность, поэтому они используются в виде композиций в сочетании с другими материалами или сплаваьш, которые лучше удовлетворяют этим требованиям. Подробное описание свойств керметов дают Линч и др. [17].  [c.461]

Для изготовления магнитострикционных вибраторов применяются ферромагнитные материалы — никель, кобальт и их сплавы. Хорошим магнитострикционным свойством обладает сплав пермендюр. Преимуществом магнитострикционных вибраторов перед другими является их большая механическая прочность и возможность присоединения к ним трансформаторов скорости, что позволяет значительно увеличить амплитуду излучаемых колебаний. При наличии трансформатора скорости можно производить ультразвуковую пайку при сравнительно высоких температурах без опасения потери работоспособности стриктора от нагревания его до точки Кюри. В диапазоне более высоких частот используются пьезоэлектрические вибраторы — кварцевые и керамические из титаната бария. Широкое практическое применение получили вибраторы из поляризованного титаната бария. Эти вибраторы позволяют получить большую акустическую мощность за счет фокусирования.  [c.220]


Общие данные по имеющимся нелинейным элементам и рекомендации по их применению в электрических моделях можно найти в монографии [95]. Так, в качестве нелинейных элементов могут быть использованы некоторые материалы, обладающие особыми свойствами, например тириты, которые получаются прессованием под высоким давлением кремниевого карбида с керамическим клеем (с последующим обжигом при высокой температуре). Вольт-амперная характеристика нелинейного элемента, изготовленного из тирита, описывается уравнением U = (В — onst а — onst).  [c.57]

Основными ценными качествами керамики, использутощимися во всех областях ее применения, являются химо- и теплостойкость. Поскольку большинство керамических материалов состоит из оксидов металлов, дальнейшее окисление (при горении или других химических реакциях), как правило, невозможно. Прочность связей между атомами в керамических материалах огфеделяет также их высокие температуру плавления, твердость и жесткость. Однако, природа этих же связей оп-реде.тает и решающий недостаток керамики - ее хрупкость. Прочность связей препятствует скольжению атомных слоев относительно друг друга, и материал теряет деформируемость (имеющуюся у пластичных материалов типа меди), а с ней и способность противостоять прилагаемой нафузке. Другое следствие хрупкости керамики состоит в том, что вьщерживаемые ею сжимающие нагрузки существенно превосходят допустимые нагрузки на растяжение и сдвиг. Под действием нагрузки хрупкий материл легко трескается и разрушается, поэтому керамические материалы чрезвычайно чувствительны к малейшим нарушениям микроструктуры, которые становятся источниками зарождения трещин.  [c.53]

Продолжаются исследования других объемных bulk) наноматериалов для выявления областей их применения при изготовлении конструкционных изделий (например, материалов, полученных обработкой давлением наноструктурных металлических и керамических заготовок в режиме сверхпластичности).  [c.153]

Различным керамическим материалам или системам свойствен тот или иной механизм спекания (или их совокупность), Для глиносодержащей керамики характерно жидкостное спекание, для большинства видов современной технической керамики характерны применение или синтез кристаллических фаз и соответственно твердофазовые виды спекания для многих материалов наблюдается обычно совместное действие различных механиз1мов спекания.  [c.70]

Горячая коррозия материала стала первой проблемой, с которой пришлось столкнуться при производстве мощных генераторных турбин и турбин общего назначения, использующих низкосортное топливо, загрязненное серой, натрием и другими примесями, или турбин, работающих в таких условиях, которые допускают попадание в них загрязняющих примесей через воздухозаборники, например в морских условиях или в условиях пустыни. Алюминидные покрытия, разработанные для предотвращения окисления материалов в авиационных двигателях, оказались неэффективными против разъедания при горячей коррозии. Это стимулировало разработку покрытий других типов, предназначенных специально для противостояния горячей коррозии. Позже был обнаружен еще один механизм разъедания, известный ныне как низкотемпературная горячая коррозия. Для его подавления потребовалось разработать покрытия совсем другого состава, чем требовались для противостояния классической горячей коррозии. Для снижения температуры деталей из суперсплавов, работающих в двигателях, где температура окружающей среды превышает температурвый порог работоспособности материала, были разработаны теплозащитные барьерные покрытия (ТЗБП), в которых используются керамические слои. Таким образом, различные покрытия разных классов и технологии их нанесения разрабатывались в соответствие с ужесточением требований, предъявляемых к материалам, при расширении сферы их применения.  [c.89]

На современном этапе распространению порошковой технологии способствует постоянное повышение требований к материалам для газовых турбин. Новые порошковые материалы типа дисперсионно—упрочняемых сплавов или сплавов серии NiMoAl обладают большими потенциальными возможностями, расширяющими возможные области их применения, однако с развитием конкурирующих технологических процессов и таких материалов, как керамики и керамические композиционные материалы, все большее значение приобретает фактор экономической эффективности.  [c.259]

Исследования структуры и свойств мартенситно-стареющих сталей (гл. 6) проводили с целью разработки оптимальных режимов термообработки композитных конструкций, обеспечивающих повышение прочности изделий. Это имеет важное практическое значение при создании конструкций, работающих в агрессивных средах, при высоких давлениях и теплообмене. Исследования характеристик трещино-стойкости волокнистого бороалюминиевого композита (гл. 8) были предопределены необходимостью оценки несущей способности элементов ферменных конструкций космических аппаратов с учетом влияния технологических и эксплуатационных дефектов. Интенсивное развитие нанотехнологий, использующих новый класс материалов — ультрадисперсные порошки химических соединений, привело к резкому увеличению числа работ по их практическому применению для повышения качества металлоизделий. Результаты 20-летних исследований в этом направлении представлены в гл. 9. Широкие перспективы использования керамических материалов, в частности конструкционной керамики на основе оксида алюминия, а также проведенные исследования обозначили ряд проблем при изготовлении изделий — недостаточная эксплуатационная надежность, хрупкость, сложность формирования бездефектной структуры. Отсюда возникли задачи исследования трещиностойкости керамики в связи с влиянием структуры, свойств и технологии ее получения (гл. 10).  [c.9]

Является перспективным использование керамических материалов. В настоящее время их применение сдерживается в основном двумя причинами. Первая — большой разброс коэффициента усадки шликерной массы при спекании, что не позволяет получать детали выше 5-го класса точности. Вторая причина связана с тем, что для изготовления деталей из высокоглиноземистых шликерых масс требуется специальное технологическое оборудование — шаровые мельницы для приготовления массы, машины шли-керного литья и водородные печи для спекания массы.  [c.161]

В настоящее время в практике обработки высокопрочных, твердых и тугоплавких материалов начинает применяться так называемое виброрезание. Режущему инструменту принудительно сообщают низко- и высокочастотные или ультразвуковые колебания с малой амплитудой. При этом снижаются силы резания и уменьшается сопротивление трению. Влияние этих колебаний на процессы, происходящие в технологической системе, изучено еще недостаточно глубоко. Это не дает возможности точно определить область их целесообразного и эффективного применения и в особенности при обработке жаропрочных, титановых и тугоплавких сплавов, а также керамических и композиционных материалов.  [c.60]

ВИЛСЯ ряд смежных отраслей науки и техники — радиофизика, радиоастрономия, радиолокация, радионавигация, радиомикроскопия, счетно-вычислительная техника, электронная автоматика производственных процессов и много других. Создана новейшая оригинальная аппаратура с использованием керамических материалов. В большинстве случаев ати материалы предназначены для эксплуатации их в условиях слабых токов, токов высокой частоты. Поэтому керамические материалы, применяемые в радиотехнике, имеюш,ие общее название радиотехнической керамики, часто именуются высокочастотными керамическими материалами . Керамические материалы, используемые в вакуумной технике в электронных лампах, называются вакуумной керамикой они являются одновременно высокочастотной керамикой. То же касается в некоторой мере и керамики, предназначенной для конденсаторов и получившей название по признаку применения — конденсаторная керамика . Однако к каждому из этих видов керамических материалов предъявляются одно или несколько специфических требований, которые определяют их назначение и оправдывают их название.  [c.289]



Смотреть страницы где упоминается термин Керамические материалы и их применение : [c.124]    [c.102]    [c.211]    [c.9]    [c.41]    [c.248]    [c.258]    [c.343]    [c.292]    [c.502]    [c.768]    [c.326]    [c.398]   
Смотреть главы в:

Материаловедение в санитарной технике Издание 2  -> Керамические материалы и их применение



ПОИСК



Керамические и углерод-углеродные композиционные материалы. Основные свойства, методы получения и области применения

Керамические материалы

Керамические материалы и их применение в санитарно-технических устройствах



© 2025 Mash-xxl.info Реклама на сайте