Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионное растрескивание под напряжением (КРН) алюминиевых сплавов

Большая часть проведенных в последнее время исследований посвящена коррозионному растрескиванию высокопрочных алюминиевых сплавов, в частности сплава 7075, представляющего систему А1 — iZn — Mg—Mn. В 1972 г. Американская алюминиевая компания опубликовала данные о влиянии легирующих добавок или замещения компонентов этого сплава другими элементами на коррозию под напряжением [197]. Короткие поперечные образцы испытывали на растяжение при постоянной деформации в промышленной атмосфере (Нью-Кенсингтон, Пенсильвания, США) и в условиях периодического погружения в  [c.191]


Фиг. 84. Влияние относительной влажности и коэффициента интенсивности напряжения на скорость коррозионного растрескивания высокопрочного алюминиевого сплава [107]. Фиг. 84. <a href="/info/95372">Влияние относительной</a> влажности и <a href="/info/20359">коэффициента интенсивности напряжения</a> на <a href="/info/48281">скорость коррозионного</a> растрескивания высокопрочного алюминиевого сплава [107].
Согласно И. Н. Фридляндеру чувствительность к коррозионному растрескиванию стареющих алюминиевых сплавов обусловливается стадиями старения. Высокое сопротивление коррозионному растрескиванию отвечает зонной стадии старения и стадии коагуляции при старении ухудшение коррозии под напряжением вызывается фазовой стадией старения с преобладанием в структуре наряду с зонами Г. П. дисперсных частиц метастабильных фаз [22 23 с. 51.  [c.519]

Приведен анализ тонкой структуры стареющих деформируемых алюминиевых сплавов показана связь между структурой, механическими свойствами и склонностью к коррозионному растрескиванию. С применением методов дифракционной электронной микроскопии установлена зависимость дислокационной структуры от фазового состава сплава, уровня растягивающих напряжений, состава коррозионной среды и величины электродного потенциала. Описаны структурные особенности, сопутствующие коррозионному растрескиванию промышленных алюминиевых сплавов. Обобщенные данные могут использоваться при разработке новых сплавов и режимов их термической обработки, а также при анализе эксплуатационных разрушений.  [c.632]

Алюминий, цинк и их сплавы успешно используются в качестве металлизационных покрытий для защиты высокопрочных алюминиевых сплавов типа алюминий — цинк — магний от коррозии под напряжением и коррозионного растрескивания. Разрушение этих сплавов на практике случается очень редко. Напыляемые металлические покрытия толщиной 125 мкм обеспечивают полную защиту сроком более 10 лет, а также протекторную защиту в случае повреждения основного металла.  [c.81]

Кривая, выражающая зависимость времени до разрушения образцов из сплава с концентрацией 7% магния от длительности отжига при температуре 200° С, проходит через минимум [111,211], т. е. режим термической обработки и соответствующая ему структура сплавов существенным образом влияют на интенсивность коррозионного растрескивания. П. Бреннер [111,218] приводит следующий оптимальный режим термической обработки алюминиевых сплавов (с точки зрения чувствительности к коррозионному растрескиванию) нагрев в течение 30 мин при температуре 480° С, затем выдержка в течение 3 мин в соляной ванне при температуре 115° С и охлаждение в воде до температуры 20° С. Медленное охлаждение алюминия, легированного магнием и цинком, увеличивает его стойкость по отношению к коррозионному растрескиванию [111,220]. Сплав алюминия с концентрацией 4,7% магния наиболее чувствителен к коррозионному растрескиванию после отжига при температуре 150° С в течение 168 час [111,221]. В пересыщенных твердых растворах алюминия наличие малых количеств примесей в металле значительно сказывается на чувствительности сплава к коррозии под напряжением [111,218]. Так, сплав алюминия с цинком и магнием, изготовленный из чистых материалов, более чувствителен к коррозионному растрескиванию, чем сплав, содержащий примеси шихтовых материалов.  [c.210]


Коррозионная усталость 28, 155 сл. Коррозионное растрескивание под напряжением (КРН) 29 алюминиевых сплавов 353, 354 в грунтах 186, 187 влияние приложенного потенциала 144 железа 132—136 инициирование 142—145 критический потенциал 141 сл. латуней 334—338 магния 355 меди 327 никеля 360  [c.451]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде.  [c.109]

Во время эксплуатации многие высокопрочные алюминиевые сплавы при определенных условиях могут разрушаться при напряжениях значительно более низких, чем предел текучести, в результате КР (коррозионного растрескивания). Большие потенциальные потери несущей способности конструкций из-за КР могут быть оценены по данным, приведенным в табл. 4 (см. значения порогового уровня напряжений при КР). Так как такое растрескивание часто имеет место при напряжениях ниже уровня предела текучести, для анализа этого процесса могут быть применены основные положения линейной механики вязкого разрушения. Основным в механике разрушения является положение, согласно которому быстрое распространение механической трещины происходит при условии, что коэффициент интенсивности напряжений в вершине трещины будет равным или несколько превышать критическое значение Ки, характеризующее вязкость разрушения материала.  [c.151]


В соответствии с этим положением может быть дано определение КР высокопрочных алюминиевых сплавов как субкритического роста трещины в условиях коррозионной среды в результате постоянного действия растягивающих напряжений. При этом не рассматривается чистое механическое растрескивание при коэффициентах интенсивности напряжений выше критических.  [c.151]

В наибольшей степени к коррозионному растрескиванию под напряжением склонны латуни с высоким содержанием цинка и некоторые сорта алюминиевых латуней. Медь, медноникелевые и другие сплавы с высоким содержанием меди менее подвержены этому виду разрушения.  [c.102]

Сплавы серий 2000 и 7000. Высокопрочные алюминиевые сплавы серий 2000 и 7000 склонны к коррозионному растрескиванию под напряжением в морских средах. Вероятность такого разрушения зависит от состава и режима термообработки сплава. Наибольшая восприимчивость к коррозии под напряжением наблюдается при термообработках, при-  [c.152]

Представляет собой очень опасный вид коррозионного разрушения, поскольку ему подвержены многие металлы. Например, разнообразные чугуны, стали, нержавеющие стали, медные и алюминиевые сплавы подвержены коррозионному растрескиванию под напряжением в некоторых коррозионных средах.  [c.22]

Коррозионному растрескиванию особенно подвержены высокопрочные стали, нержавеющие стали и сплавы, титановые, алюминиевые и магниевые сплавы, т. е. самые современные конструкционные материалы. Анодное растворение металла под напряжением на локальных, экстремальных его участках, имеющее термодинамическую возможность протекать до или одновременно с водородным охрупчиванием, с точки зрения электрохимии имеет много общего с питтингом.  [c.228]

Деформируемые магниевые сплавы системы Mg—AI— d— Ag—Mn представляют большой интерес для машиностроения, так как при малом удельном весе обладают прочностью, равной прочности алюминиевого сплава марки Д16. При определенном составе и соответствующей термообработке прочность таких сплавов достигает 45—50 кг мм . Предварительные исследования показали, что указанные сплавы обладают исключительно большой склонностью к коррозии под напряжением, превосходящей склонность к коррозионному растрескиванию сплава МАБ.  [c.150]

Среди общей коррозии более неприятными являются ее виды, имеющие сосредоточенный характер. Местная межкристаллитная коррозия, возникающая преимущественно в сварных соединениях хромистых и хромоникелевых сталей и алюминиевых сплавах, резко снижает несущую способность конструкций и более опасна, чем общая, поскольку ее трудне прогнозировать. Но наибольшую опасность представляют разрушения, которые могут возникнуть вследствие коррозионной усталости. Этот вид разрушений вызывает совместное воздействие коррозионной среды и напряжений при статических нагрузках (коррозионное растрескивание), а также при повторно-  [c.168]

Коррозионное растрескивание сплавов возникает ири одновременном воздействии коррозионной среды и статических растягивающих напряжений. Напряжения могут быть внещние и внутренние. Коррозионному растрескиванию под напряжением подвержены некоторые алюминиевые сплавы, магниевые и медные сплавы, а также высокопрочные сплавы и нержавеющие стали.  [c.267]

Влияние температуры и продолжительности старения или отпуска. Изменением температуры старения и его продолжительности часто удается привести сплав в состояние, при котором он практически не склонен к коррозии под напряжением. Это хорошо иллюстрируется результатами, достигнутыми за последние годы в области разработки высокопрочных алюминиевых сплавов, применение которых долгое время ограничивалось из-за их высокой склонности к коррозионному растрескиванию.  [c.278]

Среди магниевых сплавов, которые могут выпускаться в виде лпстов, заслуживает внимание сплав МАЗ нмеющи11 следующие I. rexaHHHe KHe свойства 00,2= 16 кг1мм , ай = 30 кг/мм-, 6 = 14%. Однако применению сплава МАЗ в виде листов препятствует его заметно выраженная склонность к коррозионному растрескиванию. Одна из особенностей сплава МАЗ заключается в том, что термическая обработка, представляющая действенный метод снижения склонности к коррозионному растрескиванию многих алюминиевых сплавов, практически не оказывает влияния на его чувствительность к коррозии под напряжением. Обычные методы оксидирования сплава МАЗ также не устраняют опасности коррозионного растрескивания  [c.180]

Исследование коррозионного растрескивания листовых алюминиевых сплавов [157] (напряжения создавались путем сведения концов изогнутых в петлю образцов) в 3%-пом растворе Na l (табл. 32) также показывают (фиг. 125), что по мере роста температуры скорость коррозионного растрескивания сплава резко и непрерывно возрастает.  [c.155]

Подвергаются коррозионному растрескиванию также титановые, никелевые и некоторые другие сплавы. Данный процесс имеет электрохимическую природу, поэтому катодная и анодная поляризация влияет на время до растрескивания сплавов при коррозпи под напряжением. Катодная поляризация может предотвращать коррозионное растрескивание магниевых, алюминиевых сплавов, нержавеющих, низколегированных углеродистых сталей и др. Время до разрушения при коррозии под напряжением сложным образом зависит от навязан кого электродного потенциала.  [c.94]

Выбор высокопрочных алюминиевых сплавов весьма велик (некоторые из них приведены в табл. 20.1). Соотношение компонентов и режим термической обработки этих сплавов обычно выбирают с таким расчетом, чтобы склонность к КРН была минимальной. Термическая обработка с образованием твердого раствора влияет на склонность к коррозионному растрескиваткию, так как изменяет состав сплава в области границ зерен и микроструктуру сплава [33]. В некоторых случаях эксплуатационные температуры, особенно превышающие комнатные значения, могут приводить к искусственному старению сплава. При этом склонность к растрескиванию может увеличиться, и в присутствии влаги или хлорида натрия произойдет преждевременное разрушение металла. Любой из описанных выше сплавов проявляет наибольшую склонность к растрескиванию в тех случаях, когда растягивающее напряжение действует по нормали к направлению прокатки. По-видимому, в этом случае в процессе участвует большая часть граничных поверхностей удлиненных зерен, вдоль которых распространяются трещины.  [c.354]


Опасность коррозионного растрескивания титановых сплавов в водных растворах галогенидов возникает при внешней поляризации — 0,5 0,3 В (по хлорсеребряному электроду). Это следует учитывать при конструировании и эксплуатации оборудования. Необходимо также не допускать подкисления растворов в щелях, застойных зонах и других местах особенно на участках повышенной концентрации напряжений, где облегчается возникновение микродефекта и дальнейшее его развитие в виде коррозионной трещины. С целью ингибирования в растер вводят ионы гидроксила или буферных соединений. Другой способ защиты от коррозионного растрескивания—нанесение на поверхность титановых сплавов модифицированной композиции 5А-5, содержащей фтористый кальций, смолу ДС808, алюминиевую пудру, ксилол и катализаторы ХН-6-2163 [43].  [c.42]

Обычная коррозионная стойкость материала не является показательной в отношении склонности его к коррозионному растрескиванию. Известно, например, что высокопрочные деформируемые сплавы системы А1—Zn—Mg при хорошей общей коррозионной стойкости обладают высокой чувствительностью к КПН, особенно в зоне сварных соединений, что затрудняет их применение [64]. Углеродистые и малолегированные стали весьма стойки к общей коррозии в щелочной среде при повышенных температурах, в то же время они склонны к КПН в этих средах. Наоборот, многие магниевые сплавы, весьма чувствительные к общей коррозии, не проявляют существенной склонности к разрушению типа КПН, то же можно сказать о широко распространенном алюминиевом сплаве АК4 и др. Вместе с тем каверны, язвы и другие коррозионные повреждения, являясь концентраторами напряжений, часто служат очагами коррозионного растрескивания. Если материал склонен и к общей коррозии, и к КПН, трудно разделить эти два процесса как в начальной стадии, так и при развитии разрушения. Так, коррозионное растрескивание титановых сплавов ВТ6, ВТ 14 (термоупрочненного)  [c.73]

При переводе 7-го тома было решено также дополнить эти главы другими обзорными материалами по проблеме коррозионного растрескивания, опубликованными в этой серии. Если не считать упомянутой главы, относящейся к урану, которая уже переведена, то таких обзоров оказалось два. Они охватывают основные закономерности коррозионного растрескивания алюминиевых (т. 2) и титановых (т. 3) сплавов. Дополнив этими двумя главами перевод 7-го тома, удалось, таким образом, создать работу по проблеме коррозии в напряженном состоянии, которая одновременно содержит и справочные сведения. В результате все материалы, относящиеся к этой проблеме в серии Достижения науки о коррозии и технологии защиты от нее , после выхода в свет данной книги будут доступны широким кругам работников научных учреждений 1( промышленности. В свете решений XXVI съезда КПСС по сокращению материалоемкости, а также рациональному использованию сплавов в новых развивающихся отраслях техники следует признать своевременным выпуск книги, рассматривающей с точки зрения последних достижений науки процесс коррозионного растрескивания сплавов.  [c.6]

Поскольку коррозионная стойкость алюминия и его сплавов опре-деляетс я сохранностью пассивной окисной пленки, то эти материалы обычно более стойки в таких условиях, где поверхность металла находится в контакте с хорошо аэрированной морской водой или атмосферой. Многие алюминиевые сплавы, особенно высокопрочные, подвер-женны локальному разрушению, принимающему форму питтииговой, щелевой или расслаивающей коррозии, а также склонны к коррозионному растрескиванию под напряжением.  [c.130]

Рис. 83. Коррозионное растрескивание алюминиевых сплавов под напряжением в естественных и лабораторных условиях [96]. Образцы сплавов 7178, 7079 н Х7006 (катаный пруток диаметром 6,35 мм) нагружались соответственно до 75, 50 и 25 % предела текучести в поперечном направлении Рис. 83. <a href="/info/163067">Коррозионное растрескивание алюминиевых сплавов</a> под напряжением в естественных и лабораторных условиях [96]. Образцы сплавов 7178, 7079 н Х7006 (катаный пруток диаметром 6,35 мм) нагружались соответственно до 75, 50 и 25 % <a href="/info/1680">предела текучести</a> в поперечном направлении
Рис. 84. Механические свойства и стойкость алюминиевых сплавов к коррозионному растрескиванию под напряжением в морской воде [97]. Коррозионные испытания периодическое погружение образцов (пруток диаметром 6,35 мм) в 3,5 %-иый Na l, продолжительность 12 нед. Рис. 84. Механические свойства и стойкость <a href="/info/29899">алюминиевых сплавов</a> к <a href="/info/1553">коррозионному растрескиванию</a> под напряжением в <a href="/info/39699">морской воде</a> [97]. <a href="/info/64932">Коррозионные испытания</a> периодическое погружение образцов (пруток диаметром 6,35 мм) в 3,5 %-иый Na l, продолжительность 12 нед.
В результате всех этих исследований Американской алюминиевой компанией был разработан сплав МА15 [199]. При 30-сут испытаниях в условиях периодического погружения в 3,5 % -ный раствор Na l была отмечена хорошая стойкость к коррозионному растрескиванию коротких поперечных образцов, нагруженных до 170 МПа (значение предела текучести в продольном направлении 420 МПа). Сплав с оптимальным сочетанием прочности и стойкости к коррозии под напряжением содержит 5,5—6,5 % Zn, 1.9—2,4 % Mg, 2.25—2.75 % Си. 0,08-0.14 % Zr.  [c.192]

Значительные проблемы в этой области связаны с коррозией под напряжением, при трении, с коррозионной усталостью и растрескиванием. Однако коррозия наружных и особенно скрытых поверхностей фюзеляжа самолета весьма актуальна. В замкнутых объемах и профилях фюзеляжа, как и в полостях кузовов автомобилей, влага задерживается длительное время. Это объясняется следующими причинами высокой относительной влажностью (до 90% и выше) в непроветриваемых, труднодоступных частях центроплана высокой температурой в этих объемах (летом на 10—15°С выше температуры окружающего воздуха) попаданием конденсата и агрессивных жидкостей конденсацией воды в топливных баках и т. д. Наиболее распространенными являются контактная, щелевая и нитевидная коррозии, расслаивающая коррозия, ииттинг- и фреттинг-коррозии. Продукты коррозии легких сплавов имеют больший объем, чем сам металл и могут наносить значительный ущерб прочности конструкций. Коррозия алюминиевых сплавов в щелях в 10—12 раз выше коррозии на поверхности потенциал в щели на 200—300 мВ сдвинут в отрицательную область [128].  [c.202]

В первоначальных теориях коррозионного растрескивания рассматривался двухстадийный процесс сначала электрохимическая реакция создает точечное поражение, являющееся концентратором напряжений, от которого затем распространяется на короткое расстояние трещина, после чего электрохимическая реакция повторяется. На такое двухстадийное развитие процесса в низкоуглеродистых сталях в нитратных растворах и в некоторых алюминиевых сплавах указывали внезапные всплески потенциала образцов, неравномерное их удлинение (затруднительное для объяснения, если образцы содержат много трещин) и акустические методы. В аустенитных нержавеющих сталях двухстадийный процесс не был обнаружен. Неравномерное распространение трещин в низкоуглеродистых сталях можно объяснить выделениями по границам зерен или связать с известными интерметаллическими соединениями в некоторых алюминиевых сплавах. Однако аустенитные нержавеющие стали являются сплавами с высокой вязкостью, и маловероятно, что в них возможно существование надреза, служащего концентратором напряжений и способного вызвать образование коротких трещин хрупкости скорее всего пластическая релаксация приведет к затуплению соотвествующего острия. Подобное же возражение можно высказать относительно коррозионного растрескивания а-латуней, хотя было Доказано, что в их локальных областях ближнего порядка могут существовать хрупкие трещины [115].  [c.185]


Сплавы с суммарным содержанием цинка и магния не более 6% не склонны к коррозии под напряжением после любых видов термической обработки. При увеличении содержания этих элементов в сплавах склонность их к растрескиванию под напряжением резко возрастает. Как и другие алюминиевые сплавы, сплавы системы А1 — M.g — 2п приобретают склонность к коррозионному растрескиванию под напряжением при определенных видах термической обработки. Так как распад твердого раствора в этих сплавах наступает уже при комнатной температуре, то в отличие от дуралюмина они в естественно состаоенном состоянии обладают наибольшей склонностью к коррозии под напряжением. Повышение темпеоатуры старения приводит к улучшению коррозионной стойкости сплавов А1 —Mg —2п и А1 — — 2п — Си под напряжением.  [c.270]

Влияние окисной пленки на скорость коррозионного растрескивания алюминиевых сплавов в 0,1 н растворе Na l. Одноосное растяжение. Исходные напряжения 75 /о от Оц 2  [c.119]


Смотреть страницы где упоминается термин Коррозионное растрескивание под напряжением (КРН) алюминиевых сплавов : [c.211]    [c.588]    [c.36]    [c.127]    [c.12]    [c.192]    [c.193]    [c.195]    [c.206]    [c.212]    [c.237]    [c.172]    [c.176]    [c.119]    [c.122]    [c.517]   
Коррозия и борьба с ней (1989) -- [ c.353 , c.354 ]



ПОИСК



Коррозионное растрескивани

Коррозионное растрескивание

Коррозионное растрескивание алюминиевых сплавов

Коррозионное растрескивание под напряжением (КРН)

Растрескивание

Растрескивание под напряжением

Сплавы Коррозионное растрескивание



© 2025 Mash-xxl.info Реклама на сайте