Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОБЛАСТЬ ВЫСОКИХ ТЕМПЕРАТУР Высокие температуры в газах. Г. X. Дик

Второй закон термодинамики, как и первый, основан на надежных экспериментальных данных, полученных в результате следующих наблюдений теплота самопроизвольно переходит из области высоких температур в область низких температур, газы самопроизвольно перетекают из области высокого давления в область низкого давления, два различных газа самопроизвольно смешиваются и теплота не может быть количественно превращена в работу в периодически действующей тепловой машине. Объяснение этих наблюдений основано на молекулярной структуре вещества. Однако экспериментальные наблюдения отражают поведение не отдельных молекул, а статистическое поведение большой группы молекул. Следовательно, второй закон термодинамики, который основан на наблюдении макроскопических свойств, по природе своей является статистическим и справедливость его ограничена законом статистики.  [c.189]


В этом примере принято, что температуры системы и окружающего пространства одинаковы. Если в окружающей среде температура выше, чем в газовой системе, изменение энтропии для окружающего пространства будет менее отрицательным, чем значение, приведенное выше. Это приводит к более положительному общему изменению энтропии для изолированной системы газ плюс окружающая среда даже на стадии е изменение общей энтропии будет положительным. Это показывает, что переход теплоты из области высокой температуры в область низкой — необратимый процесс.  [c.196]

Чтобы удалить большинство растворенных в вольфраме газов, необходимо нагреть его в вакууме до температуры около 2200 °С и откачивать в течение примерно двух часов (здесь и в -последующем при обсуждении изменений в вольфраме приводится истинная температура, а не спектральная яркостная температура). После такой обработки основная часть оставшегося в стеклянной оболочке лампы газа будет появляться из молибденовых или никелевых вводов, которые остаются при более низкой температуре, или из стекла. Нагретый вольфрам выделяет следующие газы (в порядке их концентрации) азот, окись углерода и водород. Присутствие их в твердом растворе всегда увеличивает электрическое сопротивление металла. Если после отпайки лампы имеет место чрезмерная дегазация вольфрама, обычно наблюдается гистерезис соотношения со-противление/температура. Этот гистерезис происходит следующим образом. При высоких температурах газ выделяется из глубины металла диффузией к поверхности и испарением. При охлаждении тот же газ, если он не был удален откачкой или абсорбирован в другом месте, конденсируется на поверхности вольфрама и начинает диффундировать обратно в металл, увеличивая тем самым его сопротивление. Скорость, с которой происходят все эти процессы, является экспоненциальной функцией температуры. Для ламп, используемых в области до 1800 °С, дрейф сопротивления при охлаждении, скажем до 1200 °С, может происходить в пределах нескольких дней как результат недостаточной дегазации в начальной стадии или последующей течи.  [c.353]

Углекислый газ в области высоких температур диссоциирует на СО и О2. На этот процесс расходуется часть тепловой энергии и дугового разряда  [c.381]

Надо отметить, что в области высоких температур или в случае больших перепадов давлений понижение температуры газа за счет его изоэнтропного расширения всегда предпочтительнее, чем за счет дросселирования. Это хорошо видно при сравнении эффективности охлаждения рабочего тела при дросселировании (процесс 5—6) и обратимом адиабатном расширении (процесс 5-7) АТ, АТ,.  [c.123]


Если сжатие вести по критической изотерме г = то она не пересечет пограничные NK и МК, а только коснется их критической точки. Изотермы с температурами выше критической проходят выше точки К, имея здесь перегиб, который будет тем меньше, чем выше температура перегретого пара над уровнем критической температуры тела, тем больше газ по своим свойствам приближается к свойствам идеального газа. Поэтому в области высоких температур при прове-  [c.65]

Составляющая теплоотдачи а излучением играет заметную роль в области высоких температур по газам (Г > 400 °С). На величину а кроме средней температуры Т газов оказывают влияние оптические свойства, скорость газов, температура Т, 206  [c.206]

Квантовая теория теплоемкости устанавливает прежде всего несправедливость теоремы о равно.мерном распределении энергии по степеням свободы в области низких и высоких температур. С уменьшением температуры газа происходит вымораживание числа степеней свободы молекулы. Так, для двухатомной молекулы происходит вымораживание вращательных степеней свободы, и она вместо пяти имеет три степени свободы, а следовательно, и меньшую внутреннюю энергию и теплоемкость. С увеличением температуры у многоатомных молекул происходит возбуждение внутренних степеней свободы за счет возникновения колебательного движения атомов молекулы (молекула становится осциллятором). Это приводит к увеличению внутренней энергии, а следовательно, и теплоемкости с ростом температуры.  [c.18]

В области высоких температур основное значение имеет рассеяние электронов на тепловых колебаниях решетки — на фононах. Поэтому средняя длина свободного пробега электронов должна быть обратно пропорциональна концентрации фононного газа X оз ]/пф. Так как, согласно данным табл. 4.1, в области высоких температур Пф Ой Т, то X со 1/Т. Подставляя это в (7.12) и (7.14), получаем для невырожденного газа  [c.184]

Таким образом, в области высоких температур, когда основное значение имеет рассеяние на тепловых колебаниях решетки, подвижность носителей невырожденного газа обратно  [c.185]

Многочисленные труды, посвященные теории газовых турбин, содержат доказательства большего совершенства газотурбинных установок (ГТУ) для электрических станций по сравнению с паротурбинными установками (ПТУ). Эти доказательства построены на сравнении паротурбинных станций, работающих на низких температурах с идеализированными газотурбинными станциями, работающими при высоких температурах газа. Часто доказательства преимуществ газовых турбин построены на основе неправильных сведений о свойствах водяного пара в области высоких температур и давлений. Поэтому важной является проблема определения сравнительного термодинамического преимущества ПТУ и ГТУ перспективных электрических станций.  [c.14]

Ввиду того, что газы обладают селективным поглощением, их интегральная степень черноты даже при очень больших толщинах поглощающего слоя никогда не достигает единицы. В области высоких температур интегральная степень черноты газового излучения уменьшается с ростом температуры. Особенно заметно это снижение степени черноты проявляется у водяного пара.  [c.98]

Выбор сепарационных устройств комбинированных котлов КВ-ГМ-180. Возможность получения в комбинированных котлах КВ-ГМ-180 значительной паропро-изводительности, достигающей 200— 210 т/ч, потребовала технико-экономических обоснований выбора типа и конструкции сепарационных устройств для паровых контуров этих котлов. Наличие конвективного пароперегревателя, расположенного в комбинированных агрегатах в области высоких температур газа, предъявляет достаточно жесткие требования к высокому качеству пара, выдаваемого паровым контуром. Ниже рассматриваются возможные варианты конструктивного решения сепарационных устройств в этом комбинированном агрегате.  [c.158]


Таким образом, число -псевдоожижения будет варьировать прямо пропорционально изменению кинематического коэффициента вязкости потока. Значит, в области высоких температур потока газо в число псевдоожижения будет выше. При псевдоожижении капельной жидкостью, наоборот, в области более высокой температуры потока число псевдоожижения будет ниже.  [c.65]

В качестве топлива использовали природный газ (<2 / 11000 ккал/кг), в качестве окислителя — воздух и кислород, но не в виде обогащенной смеси, а с раздельным их использованием. Поскольку заметное образование N2 -Ь Oj = 2NO происходит в области высоких температур, т. е. в конце зоны горения, мы считали методически правильным отделить процесс выгорания топлива от процесса образования N0. С этой целью в первую ступень камеры сгорания подавалась заранее перемешанная газовоздушная смесь, которая сжигалась с коэффициентом избытка воздуха Лв = 0,34 -г- 0,5. При этом температура в конце I ступени (в районе ввода кислорода) достигала 2120—2000° К.  [c.294]

Как видно из рассмотрения кривой инверсии (рис. 7-15), изобары р < Ри дважды пересекают кривую инверсии (точки 6 и а) перемещаясь по изобаре в область высоких температур, мы из области < О (нагрев газа при дросселировании) попадаем в область > О (охлаждение газа при дросселировании), а затем при весьма высоких температурах, в несколько раз превышающих критическую температуру, вновь попадаем в область а,- < 0. При давлениях р > Ра при любой температуре а,- < 0. Точка максимума кривой инверсии называется критической точкой инверсии. Как показывают расчеты, для ван-дер-ваальсовского газа параметры критической точки инверсии таковы  [c.245]

Для более эффективной теплопередачи поверхность нагрева воздухоподогревателя в современных котельных агрегатах разбивается на две ступени и между ними в рассечку помещается ступень водяного экономайзера. Таким образом, вторая по ходу воздуха ступень воздухоподогревателя переносится в область более высоких температур газов и температурный напор возрастает. Именно с такой компоновкой выполнены конвективные части котельных агрегатов, описанных в главе 1 (см. фиг. 1-1, 1-3, 1-4, 1-5).  [c.144]

В течение ряда лет котельные агрегаты, предназначенные для работы на АШ, конструировались с двухступенчатыми трубчатыми воздухоподогревателями. Разделяя эти ступени пакетом водяного экономайзера и вынося горячую часть воздухоподогревателя в область более высоких температур газов, удавалось обойти трудности уменьшения температурного напора при одноступенчатом подогреве воздуха. Однако при этом в конвективной части агрегата появлялись две ступени воздухоподогревателя и обычно две ступени водяного экономайзера. Там же размещался обычно целиком или хотя бы частично пароперегреватель, в блоках с промежуточным перегревом в ту же конвективную часть котлоагрегата надо поместить и вторичный перегреватель, а во многих прямоточных котлах в конвективную шахту выносилась и переходная зона, часто состоявшая тоже из двух пакетов. Эти многочисленные змеевиковые и трубчатые пакеты разделялись разрывами достаточных размеров для удобства выполнения ремонтных работ.  [c.171]

И при М==10 превосходит температуру набегаюьцего потока более чем в двадцать раз (при 7=1,4). Появление области с очень высокой температурой при гиперзвуковом обтекании тел воздухом и другими газами приводит ко второй особенности таких течений (первая выражена неравенством (23.1), а именно — к проявлению эффектов, связанных с поведением реальных газов при высокой температуре. Для учета этих эффектов вместо модели совершенного газа для воздуха или других смесей газов вводятся более сложные модели модели термодинамически равновесного газа с учетом протекания в нем физико-химических процессов — возбуждения внутренних степеней свободы молекул и атомов, диссоциации молекул, химических реакций между компонентами смеси, ионизации атомов и молекул модели, в которых учитывается конечная скорость протекания названных физико-химических процессов (модели термодинамически неравновесного или релаксируюихего газа) модели с учетом процессов молекулярного переноса в газе—вязкости, теплопроводности, диффузии, а также с учетом излучения. В последних моделях нужно принимать во внимание и то, что при высокой температуре обтекающего тела газа поверхностный слой тела может разрушаться, в результате чего поток вблизи тела будет содержать газообразные (а иногда — и испаряющиеся твердые и жидкие) продукты разрушения тела.  [c.400]

При более высоком промежуточном перегреве чем 540° может оказаться це-лесообраз1№Ш размещение вторичного перегревателя в области еще более высоких температур газов вплоть до устройства его частиЧ Но из ширмовых поверхностей, даже если это будет связано с применением несколько более легированной стали.  [c.97]

В последние годы метод нагретой нити получил дальнейшее развитие. Блейс и Менн [26], Д. Л. Тимрот и А. С. Умапский [64] видоизменили этот метод с целью измерения теплопроводности газов в области высоких температур (выше 1300° К), в которой применение обычного метода нагретой нити осложнено трудностью длительно поддерживать строгое постоянство температуры стенки измерительной трубки и достаточно точного измерения малой разности температур в слое исследуемого газа при этих температурах.  [c.32]

Некоторые свойства, важные для первичной термометрии, зависят в конкретной температурной области от той или иной части потенциала. При низких температурах взаимодействие между молекулами определяется в основном дальнодействую-щими силами притяжения. При понижении температуры молекулы проводят все больше времени в окрестностях друг друга, группируясь парами. В результате этого давление оказывается ниже, чем в случае идеального газа, а второй вириальный коэффициент В(Т) имеет отрицательное значение и продолжает уменьщаться с понижением температуры. При высоких температурах столкновения между молекулами становятся более интенсивными и решающее значение приобретают силы отталкивания. Это приводит к эффекту исчезновения некоторого объема, что в свою очередь вызывает увеличение давления по сравнению с величиной для идеального газа и, следовательно,— к положительному значению В(Т). При дальнейшем повышении температуры величина В(Т) снова уменьшается в связи с тем, что при сильных взаимодействиях между молекулами оболочки последних деформируются и собственный объем молекул уменьшается. На рис. 3.2 кроме В(Т) показаны рассчитанные зависимости С(Т), 0(Т) и Е(Т). График построен в приведенных единицах по принципу соответственных состояний (см., например, работу Мак-Глейшена [49]). Кривые соответствуют величинам В(Т) Уь и С(Т)П 1, где  [c.80]


При измерении величин Р и К принципиально необходимо вводить поправку на вредный объем, гидростатическую поправку, возникающую из-за переменной плотности газа по длине трубки для измерения давления и на термомолекулярное давление. Последняя из этих поправок обусловлена потоком частиц газа вдоль трубки, передающей давление, и является функцией давления, разности температур между концами трубки и состояния ее внутренней поверхности. На рис. 3.8 приведены величины всех трех поправок для низкотемпературного газового термометра Берри. Для газового термометра на интервал высоких температур одной из самых существенных является поправка на вредный объем. Это обусловлено тем, что в формулу (3.24) для вычисления поправки на вредный объем входят элементарные объемы участков трубки, которые содержат газ с высокой плотностью. В случае газовой термометрии при высоких температурах это те части трубки, передающей давление, которые находятся при комнатной температуре. Во время эксперимента необходимо самым тщательным образом следить за тем, чтобы температура участков соединительной трубки,которые находятся при комнатной температуре, оставалась постоянной. Кроме того, необходимо контролировать изменения объема при открывании и закрывании вентилей. Измерение температуры и объема соединительной трубки и вентилей с необходимой точностью требует применения довольно сложных экспериментальных методов и является одним из основных источников погрещности газовой термометрии в области высоких температур. В низкотемпературной газовой термометрии газ, имею-  [c.93]

В предыдущей главе при обсуждении вклада электронов проводимости в теплопроводность и теплоемкость металлов было установлено, что электронный газ в металлах является сильно вырожденным. Поскольку в этом случае концентрация электронов от температуры практически не зависит, температурная зависимость электропроводности металла o=e/ip, определяется зависимостьк> подвижности от Т. В области высоких. температур в металлах, так же как и в полупроводниках, доминирует рассеяние электронов на фононах. Выше было показано, что для вырожденного электронного газа подвижность, обусловленная рассеянием на фононах, обратно пропорциональна температуре (7.164).  [c.255]

Это уравнение также справедливо только при высоких значениях i-, когда 1—>1, то зависимость значительно усложняется. Однако (14.3) и (14.4) показывают, что состояния газа, представленные на (jO — Г)-диаграмме точками с нулевым эффектом Джоуля — Томсона, лежат на кривой, близкой к параболе. Такая кривая приведена на фиг. 32, где пунктиром показано геометрическое место точек с ан = О для газа, подчиняющегося уравнению Ван-дер-Ваальса. Каждая точка иод кривой соответствует состоянию газа, в котором эффект Джоуля — Томсона положителен (происходит охлаждение газа), тогда как все точки над кривой отвечают нагреву газа при дросселировании ад < 0). Пересечение кривой с осью при тс = 0 в области высоких температур дает значение температуры инверсии. Приведенная температура инверсии для вандерваальсовского газа Хинв. = 18/г такое же значение вытекает из уравнения (14.4). Это иллюстрируют кривые на фиг. 31, согласно которым при температурах, превышающих температуру инверсии, коэффициент ая отрицателен нри всех значениях р. На фиг. 32 видно, что для вандерваальсовского газа существует и другая, более низкая температура инверсии при т 2,2/г, но этого результата нельзя получить из уравнения (14.4) вследствие весьма приближенного характера последнего при малых значениях -с. Таким образом, в газах, подчиняющихся уравнению Ван-дер-Ваальса, при любых  [c.45]

Рассмотрим характер изменения величины и знака дроссельного эффекта в S — Т-диаграмме (рис. 13.8) при различных исходных и конечных параметрах потока условного рабочего вещества. Из рисунка видно, что линии энтальпий в области высоких давлений имеют максимум, который смещается в области высоких температур в сторону меньших давлений, становится менее выраженным и при высоких температурах исчезает совсем. В области низких давлений и высоких температур нзоэнтальпы пологи и почти совпадают с изотермами, что объясняется приближением свойств рабочего тела к свойствам идеального газа, для которого энтальпия зависит только от температуры и дроссельный эффект равен нулю = 0 АТ = 0. Действительно, с увеличением температуры интегральный дроссельный эффект уменьшается (ЛТа > ATi > ДТз). Вблизи пограничных кривых в области  [c.24]

Е от единицы характеризует степень отличия реального вещества от идеального газа. На рис. 4.1 представлены изотермы реального газа (без соблюдения масштаба). Видно, что изотермы для достаточно низких температур имеют минимум, при этом с.повышением температуры минимум вначале смещается в область более высоких давлений, а затем в область более низких. Пунктирная линия, соединяющая точки минимумов различных изотерм, носит название кривой Бойля . Точка пересечения кривой Бойля с осью ординат (р = 0) является точкой минимума для изотермы с определенной для каждого газа температурой Тб (температура Бойля). У изотерм с более высокой температурой минимум отсутствует — при любом давлении коэффициент сжимаемости Е больще единицы. Экспериментально установленный закон Бойля — Мариотта для разреженных (т. е. имеющих исчезающе малую плотность р— -0) газов именно  [c.97]

Однако закон соответственных состояний выполняется лишь приближенно. Показать это можно на следующем примере. Так как из закона соответственных состояний следует, что значения коэффициента сжимаемости подобных веществ при одинаковых приведенных температуре и давлении т и я должны быть равны, то, в частности, значение этого коэффициента в критической точке 2к= —pкVк RTк для всех веществ должно быть одинаково. В действительности же для реальных веществ значение этой величины не одинаково, а лежит в интервале 0,23— 0,33, что свидетельствует о приближенном характере закона соответственных состояний. Этот закон лучше выполняется для газов в области высоких температур (т>1,2) и хуже при приближении к двухфазной области "и в области жидкости.  [c.36]

Обращают на себя внимание и результаты, полученные при исследовании коррозии перлитных, ферритных и аустенитных сталей в промышленных условиях в продуктах сгорания мазута при испытаниях длительностью 10 тыс. ч на электростанции Mar hwood [146], которые показали, что коррозия опытных труб (температура металла 550—620 °С), расположенных перед пароперегревателем, является более интенсивной, чем труб, установленных перед выходным сечением топки в области более высоких температур газа.  [c.170]

В области высоких температур, в которой Еррщ Т, средняя энергия фонона достигает предельного значения порядка Йшд fvke, не зависящего от температуры и концентрация фононного газа должна быть пропорциональна Т Т. Основные характеристики фононного газа приведены в табл. 4.1.  [c.133]

Описанный характер коррозии проявляется также в поведении сталей в продуктах сгорания других широко применяемых в промышленности топлив (рис. 13.2). Результаты расчета глубины коррозии сталей на ресурс 10 ч, проведенного на основании данных длительных лабораторных и промышленных испытаний, показывают, что обычно коррозионно-стойкая сталь 12Х18Н12Т в продуктах сгорания сернистого мазута и угольного топлива имеет относительно небольшое преимущество перед перлитными сталями. Наибольшую стойкость в области высоких температур проявляет хромистая сталь ЭИ756. Топлива по степени коррозионной агрессивности продуктов их сгорания можно расположить в следующий ряд (в направлении усиления коррозии) природный газ, угли различных месторождений, сернистый мазут, эстонские сланцы.  [c.230]


Как видно из изложенного, особенности лучистого и конвективного теплообменов требуют различных условий для оптимальной теплоотдачи, поэтому современные печные установки, чтобы в максимальной степени использовать все возможности интенсивной теплоотдачи, во многих случаях конструируют как двухстадийные в области высоких температур— с соблюдением условий, необходимых для интенсификации теплообмена лучеиспусканием, т. е. с развитым пламенным пространством, а в области невысоких температур для газов, покидаюш,их пламенное пространство,— с развитие условий для интенсивной конвективной теплоотдачи (с П01вышенными скоростями газов в узких каналах для прохода их между изделиями или трубными пучками. Так сконструираваны, например, мартеновские печи, где зона высоких температур выполнена как пламенное рабочее пространство и где тепло передается шихте и расплавленной ванне лучеиспусканием при наивысших температурах, которые может выдержать кладка печи, а зона пониженных температур выполнена в виде тесно уложенной насадки регенератора (рис. 5-3,а) для использования тепла уходящих из пламенного пространства газов. При этом насадка может быть сделана так, что в верхней части ее, где газы все еще имеют температуру выше 1 000° С и где теплоотдача лучеиспусканием еще может играть существенную роль, каналы в насадке имеют большие размеры, а в нижних ее частях, где основную роль играет конвективная теплоотдача, — меньшие размеры.  [c.184]

Теплоотдача в условиях слоевого режима с плотным слоем осуществляется как конвекцией, так и лучеиспусканием. В области низких температур газа преобладает конвективная теплоотдача при повышении температуры газа возрастает доля излучения, однако вследствие того, что межкусковые пространства очень малы, газовое излучение происходит в тонких слоях и поэтому конвективная теплоотдача, вероятно, сохраняет свое ведущее значение вплоть до самых высоких температур газа. Соизмеримость удельных значений теплоотдачи конвекцией и лучеиспусканием и невозможность рассматривать их раздельно заставляют пользоваться величиной суммарного коэффициента теплоотдачи ( j, =ак-Ьалуч). зависящего от температуры.  [c.299]

Комбинированные циклы могут быть средством повышения тепловой экономичности ряда новых типов энергетических установок. Целесообразность совмещения достоинств гелия как рабочего тела цикла замкнутой ГТУ с высокотемпературным газо-охладждаемым реактором и достоинств конденсационного цикла углекислоты (или другого низкокипящего вещества) привела к разработке нового типа комбинированной установки [32], цикл которой изображен на рис. 25. Особенность этого цикла состоит в том, что в области высоких температур при относительно низком давлении работает инертный газ, а в нижней ступени используется конденсационный цикл низкокипящего рабочего тела, обеспечивая низкую среднетермодинамическую температуру отвода тепла.  [c.42]

Однако при противоточной схеме пароперегревателя температура выходных петель II ступени перегревателя, находящейся в зоне высоких тепловых нагрузок <7 = ПО тыс. ккал/(м -ч), достигает 600—620° С, что требует применения аустенитной стали. Переключение ступеней перегревателя на схему с параллельным током газа и пара (вход пара в I ступень, расположенную в области высоких температур газа, и выход пара в области низких температур газа) снижает температуру труб до 575° С, что позволяет использовать трубы из перлитной стали. Номинальная температура пара 540° С достигается при нагрузке ВПГ 80%. При больших нагрузках требуется впрыск небольшого количества воды для увлажнения пара на входе в пароперегре-  [c.100]

В последнее время некоторыми специалистами ставится вопрос о возобновлении выпуска труб из аустенит-ной стали ЭИ-257, ранее применявшейся в котлах сьерх-критического и сверхвысокого давления экспериментальной ТЭЦ ВТИ, а также в паролерепревателях и паропроводах котельных агрегатов ТП-240-1. Эта сталь может быть использована также и для выходных витков вто р ич ных пароперегревателей, размещаемых в области высоких температур газов.  [c.114]


Смотреть страницы где упоминается термин ОБЛАСТЬ ВЫСОКИХ ТЕМПЕРАТУР Высокие температуры в газах. Г. X. Дик : [c.161]    [c.17]    [c.367]    [c.94]    [c.323]    [c.164]    [c.163]    [c.185]    [c.298]    [c.173]    [c.87]    [c.199]    [c.41]    [c.156]    [c.85]   
Смотреть главы в:

Температура и её измерение  -> ОБЛАСТЬ ВЫСОКИХ ТЕМПЕРАТУР Высокие температуры в газах. Г. X. Дик



ПОИСК



Температура высокая

Температура газа

Температура газов



© 2025 Mash-xxl.info Реклама на сайте