Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни прямые — Расчет устойчивость

Расчет прямых стержней постоянного сечения на устойчивость  [c.61]

Стержни прямые — Расчет на устойчивость 61 Схемы нарезания червяков 597  [c.762]

Устойчивость стержней прямых — Расчет 118, 119 Уступы — Высота и длина в поковках 286, 287  [c.1139]

Сверло является характерным примером естественно закрученных стержней, и его расчет на устойчивость должен быть основан не на обычной теории устойчивости прямого стержня с неизменным положением главных осей инерции по длине стержня, а на более общей теории устойчивости естественно закрученных стержней. Так как поперечное сечение сверла на длине-его рабочей части многократно совершает полный оборот, то при определении критической нагрузки сверло можно рассматривать как предельный случай естественно закрученного стержня.  [c.873]


В главе сформулированы и решены некоторые конкретные задачи устойчивости упругих прямых стержней и прямоугольных пластин. Такие задачи встречаются при расчете тонкостенных элементов ракетных конструкций. Рассматриваются три круга вопросов определение критических нагрузок для идеально правильных стержней и пластин, влияние начальных геометрических несовершенств и поведение упругих стержней и пластин после потери устойчивости.  [c.183]

Все эти усовершенствованные методы расчетов напряженного, состояния в конструкциях судов критически освещены и развиты Петром Федоровичем Папковичем (1887—1946) в труде Строительная механика корабля . В первой его части излагаются вопросы подбора профилей, расчета статически неопределимых балок и плоских рам, составленных из прямых стержней (т. I, стр. 1—618, М., 1945) теория криволинейных рам и перекрестных связей (т. II, стр. 1—816, М.—Л., 1947). Содержание второй части составляют сложный изгиб и устойчивость стержней изгиб и устойчивость пластинок (стр. 1—960, Л., 1941). Эти три тома представляют собой самый полный и современный трактат по строительной механике корабля ).  [c.526]

При исследовании малых прогибов упругих стержней показано, как можно ввести поперечный сдвиг в дифференциальное уравнение равновесия этой теории. Излагается расчет балок на упругом основании и важная для судостроения задача, поставленная И. Г. Бубновым, о расчете перекрестных балок. Рассмотрен продольно-поперечный изгиб балок, приводится точное, а также приближенное, развитое автором, решение в тригонометрических рядах. Дается систематизированное изложение теории выпучивания прямых сплошных стержней, полос, круговых колец, двутавровых балок, устойчивости вала при кручении. Уточняется известная задача Ф. С. Ясинского о расчете на устойчивость пояса открытых мостов. Приводятся точные и приближенные решения этой задачи энергетическим методом, данные самим автором. Особенно ценны результаты, относящиеся к устойчивости плоской формы изгиба полос и двутавровых балок. Теория изгиба, кручения и устойчивости двутавровых балок была разработана автором в 1905—1906 годах и оказалась основополагающим исследованием для последующих разработок в области расчета и общей теории тонкостенных стержней. Автор приводит компактные формулы для расчета критических сил.  [c.6]

В главе ХП1 применительно к запросам машиностроения разбираются расчеты на устойчивость сжатых естественно закрученных, а также скрученных и сжато-скрученных стержней изучается устойчивость колец, устойчивость плоской формы изгиба прямых и кривых брусьев и т. д.  [c.5]


Митропольский Н. М., Приближенные расчеты прямых стержней на устойчивость от нагрузки, приложенной по длине стержня, Труды Московского института инженеров ж.-д. транспорта , вып. 74, 1950.  [c.833]

Формула Ясинского может быть применена до напряжений, равных пределу текучести (пластичный материал) или пределу прочности (хрупкий материал). Гибкость, соответствующая этим напряжениям, обозначается через кд. Стержни, для которых X <Х , называются стержнями малой гибкости. Устойчивости они не теряют, расчет для них ведется по допускаемым напряжениям (см. рис. 4.163, прямая 3).  [c.487]

В монографии представлено решение большого числа задач устойчивости, колебаний цилиндрических, конических, сферических и тороидальных оболочек на основе указанной выше редуцированной системы уравнений. Особое внимание уделено теории расчета прямого стержня, так как для этого случая теория особенно проста и выразительна.  [c.4]

К положительным элементам одномерного варианта МГЭ (простота логики формирования разрешающей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобщенного стержня из разрешающей системы и т.д.) добавляются существенно важные для расчета пластинчатых систем факторы. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причине уравнение (6.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [7]. Как будет показано ниже, этот момент позволяет существенно повысить точность решения задач устойчивости тонких пластин по предложенному алгоритму МГЭ. Использование обобщенных функций для описания нагрузки ц х, у) в (1.20) также приводит к неожиданным результатам. Реальной становится возможность вычисления касательных и нормальных напряжений в точках приложения сосредоточенных нагрузок. В этих точках, в частности, поперечная сила =0,25 (1/Ах) 00 при Ах 00 [3, с. 173]. Здесь можно отметить, что неопределенность в  [c.198]

Все изложенное относится также и к случаю сжатия, который формально отличается от случая растяжения только изменением направления силы. Фактическая разница между растяжением и сжатием гораздо глубже, потому что при сжатии может возникнуть новое явление — потеря устойчивости. Центрально сжатый прямой стержень, длина которого значительно больше поперечных размеров, может сохранять прямолинейную форму лишь тогда, когда сжимающая сила меньше некоторого критического значения. При небольшом эксцентриситете приложения силы или при малом искривлении оси стержня, неизбежном в действительности, сжимающая сила, хотя бы и меньшая критической, вызывает не только сжатие, но и изгиб. При этом эффект изгиба часто оказывается гораздо больше, чем эффект сжатия. С этим обстоятельством нужно считаться при расчете сжатых стержней, ему будет посвящена одна из глав нашего курса. Здесь же мы не делаем принципиальной разницы между растяжением н сжатием, будем лишь приписывать растягивающим напряжениям знак плюс, сжимающим — минус.  [c.34]

В пособии на подробно разобранных примерах показаны методы и приемы решения типовых задач по курсу. Рассмотрены задачи по исследованию напряженного и деформированного состояний, по применению теорий прочности, приведены расчеты прямого бруса при различных видах деформаций. Достаточное внимание уделено расчетам тонкостенных сосудов при осесимметричном нафужении и сжатых стержней на устойчивость.  [c.82]

К положрггельным элементам одномерного варианта МГЭ (простота логики формирования разрешаюш,ей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобш,енного стержня из разрешаюш,ей системы и т.д.) добавляются факторы, существенно важные для расчета пластинчатых систем. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причрше уравнение (7.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [29]. Как будет показано ниже, этот момент позволяет существенно повысить точность  [c.407]


Обращаясь к вопросу устойчивости в условиях ползучести,, надо с сожалением отметить, что надежные экспериментальные данные здесь по существу отсутствуют. Мы смогли воспользоваться только одним литературным источником [51], где условия проведения эксперимента отвечали принятой в 4 схеме расчета. Обт работка экспериментальных данных, выполненная [27] в предположении, что свойства использованного в опыте алюминиевого сплава близки к отечественному сплаву л D16T, приведена на рис. 37 вместе с аппроксимирующими прямыми (4.26). Несмотря на большой разброс, можно заметить, что экспериментальные точки тяготеют к полосе между линиями ПБ2 и ПБЗ. Таким образом, можно считать, что высказанная в гл. I гипотеза о критическом порядке псевдобифуркации находит подтверждение, и так же как и для стержней из алюминиевых сплавов, можно принять, чтс>  [c.152]

В главах 1-7 изложены основы сопротивления материалов расчет прямых стержней при простейших видах напряженно-деформированного состояния и стержневых систем, в том числе, ферм и пружин. Главы 9-14 сборника охватывают основы теории напряженного и деформированного состояний, прочность стержневых систем при сложном напряженном состоянии, безмомент-ные оболочки вращения, продольно-поперечный изгиб и устойчивость стержней, модели динамического нагружения стержневых систем, учет эффектов пластичности и элементы методов расчета на усталость. Кроме того, добавлен материал, касающийся стержней большой кривизны, а также задачи повышенной сложности. Общие теоретические положения вынесены в первый параграф приложения. Основные гипотезы сопротивления материалов сформулированы в виде аксиом, что призвано подчеркнуть феноменологический подход к построению фундамента этой науки как раздела механики деформируемого твердого тела.  [c.6]

В 1971 году в издательстве Наука вышел в свет сборник оригинальных работ Степана Прокофьевича Тимошенко Устойчивость стержней, пластин и оболочек , который был полностью просмотрен и одобрен автором. В этом сборнике дан был очерк жизни и научного творчества С. П. Тимошенко. Предлагаемый вниманию читателей сборник также был просмотрен автором и составлен согласно его желанию, хотя и выходит он уже после смерти С. П. Тимошенко, произошедшей 29 мая 1972 года в городе Вуппертале (Федеративная Республика Германия) на девяносто четвертом году жизни. Здесь содержатся двадцать шесть оригинальных работ С. П. Тимсшечко по проблемам прочности и колебаний элементов конструкции. Эти исследования посвящены изучению резонансов валов, несуш,их диски, эффективному анализу продольных, крутильных и изгибных колебаний прямых стержней посредством использования энергетического метода и применению общей теории к расчету мостов при воздействии подвижной нагрузки, вычислению напряжений в валах, лопатках и дисках турбомашин, расчету напряжений в рельсе железнодорожной колеи как стержня, лежащего на упругом сплошном основании, при статических и динамических нагружениях. Детально рассмотрены важные вопросы допускаемых напряжений в металлических мостах.  [c.11]

Между областями, соответствующими коротким и длинным стержням, располагается область промежуточных значений гибкости, слищком малых для того, чтобы относиться к упругому случаю потери устойчивости, и слишком больших для того, чтобы расчет их велся только на прочность при сжатии. Такие стержни средней длины выпучиваются неупруго. Для практических целей иногда бывает достаточно провести прямую ЕВ (рис. 10.8) и считать, что она дает критические напряжения для стержней средней длины. Таким образом получается ломаная кривая DE ВС, которую можно использовать как основу для расчета стержней произвольной длины, С другой стороны, можно использовать некоторую гладкую кривую, соС диняющую точки D и Б (см. разд. 10.6).  [c.401]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


При испытаниях стержней на устойчивость обычно реализуются именно те условия, которые приняты при установлении критерия потери устойчивости Шенли нагрузка, создаваемая испытательной машиной, непрерывно возрастает. Однако при Р= Р, прогиб первоначально прямого стержня равен нулю, фактически за момент потери устойчивости принимается момент, когда прогиб достигает некоторой достаточно большой величины, поэтому измеренная критическая сила будет находиться между Р и Р , притом ближе к Р . Для реальных материалов критические напряжения, определенные по приведен- ому и по касательному модулю, отличаются друг от друга мало, как это видно из графика на рис. 216. В то же время расчет по касательному модулю дает нижнюю границу для критического напряжения, поэтому его и нужно рекомендовать.  [c.316]


Смотреть страницы где упоминается термин Стержни прямые — Расчет устойчивость : [c.142]    [c.613]    [c.263]   
Краткий справочник металлиста (1972) -- [ c.61 ]



ПОИСК



3—118 — Расчет прямые—Расчет

Расчет на устойчивость

Стержень — Расчет

Устойчивость прямых стержней

Устойчивость стержней



© 2025 Mash-xxl.info Реклама на сайте