Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержневые Прочность

Проверить прочность и жесткость стержневой системы, если Р  [c.7]

Таким образом, сопротивление материалов—это наиболее общая наука о прочности машин и сооружений. Однако она не исчерпывает всех вопросов механики деформируемых тел. Этими вопросами занимается ряд других смежных дисциплин строительная механика стержневых систем, теория упругости и теория пластичности. Между указанными дисциплинами нельзя установить строгой границы. Основная же роль при решении задач прочности принадлежит сопротивлению материалов.  [c.6]


Назначение — для деталей повышенной прочности осей, валов, пальце поршней и других деталей в термообработанном состоянии, а также для стержневой арматуры периодического профиля.  [c.35]

В сопротивлении материалов изучаются методы расчетов (главным образом стержней и стержневых систем) на прочность, жесткость и устойчивость.  [c.30]

Первый том включает два раздела Теоретические основы расчетов на прочность и экспериментальные методы исследования напряжений и деформаций и "Расчеты на прочность и жесткость стержневых элементов конструкций при статической нагрузке ".  [c.236]

Так, например, в строительной механике сооружений большое место занимают вопросы раскрытия статической неопределенности рам и стержневых систем, расчета балок и плит, лежащих на упругом основании, и т, д. В строительной механике самолета большое внимание уделяется вопросам устойчивости подкрепленных элементов оболочек и других тонкостенных элементов корпуса и крыльев и т. д. Словом, строительная механика любого профиля может рассматриваться как механика конкретных деформируемых конструкций и машин, привязанных к определенной отрасли техники или строительства, и ее задачей является определение напряжений и деформаций в моделях (расчетных схемах) специальных конструкций. Строительная механика служит основой для дисциплин, изучающих прочность реальных конструкций и машин (рис. 1.1). Их можно объединить общим названием Проектирование и прочность . Задача этих дисциплин — построение расчетной модели (расчетной схемы), используемой в строительной механике, и оценка прочности конструкций.  [c.6]

Если k<2n—3, то система шарнирно сочлененных концами стержней будет изменяемой стержневой системой и, следовательно, не является фермой (рис. 102, б). В этом случае конструкция получает подвижность, становится механизмом. Если же e>2ra—3, то ферма имеет лишние стержни (рис. 104), удаление которых не нарушает жесткости фермы (рис. 102, б). Такие фермы пригодны для сооружений, так как лишние стержни практически не являются вредными, наоборот, они улучшают прочность фермы. Однако расчет таких ферм не может быть выполнен методами статики твердого тела . Поэтому мы будем рассматривать плоские фермы без лишних стержней, т. е. те, которые точно удовлетворяют условию (1).  [c.143]

Итак, примерный круг вопросов, включаемых в задачи на расчеты на прочность, должен быть следующим 1) проверка прочности бруса (стержня), выполняемая в форме сопоставления расчетного напряжения с допускаемым либо в форме сопоставления расчетного коэффициента запаса с требуемым при этом в одной из задач должно быть о= (1,02-е1,04) [а] или п<[п] 2) определение допускаемой нагрузки для стержневой системы и требуемых размеров поперечного сечения.  [c.83]


Стандартное испытание на разрыв одного стержневого образца пластичного материала продолжается довольно долго — несколько десятков минут. Соответствующая, относительно невысокая скорость деформирования оговорена стандартами. Дело в том, что ускоренные испытания дают повышенные характеристики прочности и пониженные характеристики пластичности. Чем меньше время испытания, тем упомянутые различия проявляются более отчетливо. Обращаем внимание на то, что пластическое деформирование материала всегда сопровождается существенным тепловыделением. Поэтому образцы заметно нагреваются при быстрых испытаниях.  [c.63]

Расчет стержневых систем на прочность  [c.54]

РАСЧЕТ СТЕРЖНЕВЫХ СИСТЕМ НА ПРОЧНОСТЬ  [c.57]

По аналогии со стержневыми системами ( 2.5) балки можно рассчитывать на изгиб по допускаемым напряжениям. Для этого нужно потребовать, чтобы наибольшее растягивающее напряжение не превышало величины [о]р, а наибольшее сжимающее — величины [а]сж. Обозначим через hi и Лг расстояния от центра тяжести сечения до его крайних точек в сжатой и растянутой зонах соответственно. Именно в этих точках, как следует из формулы (3.5.1), абсолютные величины соответствующих напряжений максимальны. Для обеспечения прочности балки по условию допускаемых напряжений должно быть  [c.87]

Строительная механика является теорией расчета на прочность, жесткость и устойчивость стержневых систем—плоских и пространственных ферм, балочных систем, арок, плоских и пространственных рам, подпорных стенок и т. д. В строительной механике используются все предпосылки сопротивления материалов, касающиеся свойств материалов, а также гипотезы сопротивления материалов.  [c.4]

При расчете статически неопределимой стержневой системы, изображенной на рис. 3.19, условие прочности поставлено по допускаемым напряжениям, т. е. ограничение накладывалось на напряжение в наиболее напряженной точке тела. В упомянутой задаче наиболее напряженным оказался средний стержень и условие прочности по допускаемым напряжениям при действии силы F имеет вид (3.42). Если материал стержня хрупкий и разрушается без заметных пластических деформаций, то условие (3.42) определяет действительную границу безопасных нагрузок. Однако если материал стержня пластичен, то статически неопределимая система может обладать дополнительным запасом прочности, так как, например, в рассмотренной задаче о трех стержнях при достижении  [c.69]

Изучая материал предыдущих лекций, вы, конечно, оценили и поняли то особое место, которое занимают внутренние усилия в расчетах прочности и жесткости стержневых систем. Продольные и поперечные силы, крутящий и изгибающий моменты тем или иным образом входят во все соотнощения для напряжений и упругих перемещений.  [c.105]

На рис. 167 показаны различные схемы статически неопределимых систем на рис. 167, а - один раз статически неопределимая балка на рис. 167, б — два раза статически неопределимая стержневая система. Дополнительные связи вводят, как правило, для повышения прочности и жесткости конструкции.  [c.196]

Проведенные Томпсоном и др. [83] исследования стержневого эвтектического сплава Со — Сг с карбидным упрочнением свидетельствуют о прочности связи и высокотемпературной стабильности поверхности раздела. Характеристики кратковременной и длительной прочности приведены на рис. 21. Микроструктура эвтектики практически стабильна вплоть до 1370 К, а эвтектический сплав обладает более высоким сопротивлением ползучести, чем традиционный жаропрочный сплав на кобальтовой основе Маг М-302. Судя по энергии активации, процесс ползучести определяется упрочняющей карбидной фазой, что также подтверждает эффективность передачи нагрузки через поверхность раздела.  [c.263]

При этом получаются, как правило, кривые того или иного порядка, связывающие, например, наличие в отливках газовых раковин с температурой заливаемого в формы металла, или количество земляных раковин с прочностью формовочных и стержневых смесей.  [c.357]


Недостаточная прочность формовочной и стержневой смесей или краски  [c.363]

Для оценки прочности деталей машин необходимо прежде всего знать распределение нагрузки в них, а рассчитать его можно, как показывает практика, и на стержневых моделях деталей.  [c.41]

Очистка опреснительных трубок от накипи осуществляется путем разрушения ее разрядами с вводимого в трубку стержневого электрода. Эффективному разрушению солевых отложений способствует их низкая электрическая прочность и высокая хрупкость. Технологическая эффективность применения способа обусловлена тем, что кроме химического удаления накипи, малопроизводительного и экологически опасного, других удовлетворительных способов не имеется. В данном случае с высокой эффективностью используется также та особенность способа, что источник энергии и исполнительный орган могут быть как угодно далеко отстоять друг от друга канализация энергии к зоне разрушения кабелем позволяет реализовывать технологические процессы для условий ограниченного пространства.  [c.24]

Книга содержит энциклопедически полное изложение методов расчета на прочность и устойчивость. В ней представлено исследование напряженно-деформированного состояния стержневых систем при самых различных условиях нагружения. Изложение сопровождается хорошо продуманньши примерами, наглядными графиками, обстоятельными историческими комментариями. Широта охвата тематики и обилие конкретного фактического материала позволяют использовать книгу в качестве справочника и делают ее ценным учебным пособием.  [c.34]

Изготовление стержней в нагреваемой оснастке (рис. 4.17, о) состоит в следующем. На позиции / нагретые до температуры 200—300 "С половинки стержневого ящика 2 и опустошитель 3 собирают. Из пескодувного резервуара 1 стержневая смесь с синтетической смолой вдувается в стержневой ящик. Связующее при нагреве отверждается, обеспечивая прочность стержню 4. После непродолжительной выдержки (1.5—120 с) опустошитель 3 извлекают и пневматическим цилиндром 5 отводят одну из половин ящика (поз. 2) После этого вторая половина ящика поворачивается на 90 , и вытал киватС Лями 6 стержень 4 удаляется из стержневого ящика (поз. 3) Стержни, полученные этим способом, имеют высокую прочность, точ ность размеров, газопроницаемость. Этим способом стержни изго товляют на высокопроизводительных автоматических машинах.  [c.140]

Во всех случаях, когда допускает конструкция, изгиб следует заменять более выгодными видами нагружения — растяжением, сжатие.м или срезом. Целесообразно применение стержневых или близких к ним систем, элементы которых работают преимущественно на растяжение — сжатие. Если изгибное нагружение неизбежно, то следует у.меньшать плечо изгибающих сил и увеличивать моменты сопротивления на опасных участках. Особенно это важно при консольном нагружении, наиболее невыгодном по прочности и жесткости.  [c.558]

Многие преподаватели не решают задачи на определение допускаемой нагрузки, так как, вероятно, опыт подсказывает им, что для учащихся задачи этого типа труднее других. Конечно, идти по ЛИНИН наименьшего сопротивления в ущерб знаниям и навыкам учащихся непозволительно. Определение допускаемой нагрузки целесообразно отрабатывать на стержневых системах, при их решении надо составить условие прочности для каждого из. двух—четырех стержней, входящих в систему. Продольные силы, возникающие в поперечных сечениях стержней, должны быть на основе метода сечений выражены через внешнюю силу, действующую на систему. Из условий прочности будут определены два (три или четыре) допускаемых значения силы. Далее очень важно, чтобы учащиеся сами правильно решили вопрос о том, какое из этих значений искомо (наименьшее). Необходимо проверить, что правильный ответ не случаен, учащиеся доллгны ясно и логично его обосновать.  [c.84]

По меньшей мере в одной из задач на стержневые системы (упомянутая трехстержневая система или балка, подвешенная на нескольких стержнях) надо выполнить проектный расчет на прочность. Сначала надо разъяснить, что элементарным путем задачу решить невозможно, если не задано соотношение площадей сечений стержней. Рассчитываем только такие системы, в которых это соотношение задано обычно все плошади выражены через один параметр А, который должен быть определен (скажем, для балки, подвешенной на трех параллельных стержнях, у41=Л, Л2 = 1,5Л, Лз==2Л). После определения продольных сил для каждого стержня составляется условие прочности и определяется требуемое значение Л из найденных значений Л искомым будет наибольшее. Конечно, не всегда обязательно использовать все условия прочности, во многих случаях очевидно, в каком стержне напряжение наибольшее (при одинаковом материале стержней), и значение Л определяется из условия прочности этого стержня.  [c.88]

Закон Гука, гипотеза плоских сечений и принцип Сен-Венана — все это стадо достоянием инженеров лишь после десятилетий многократных, многовариантных опытов над стержневыми образцами различных материалов. Результатом этих исследований стали также обоснованные правила сравнительных испытаний образцов материалов с точки зрения их прочности и деформационных свойств. Супщствуют национальные и международные стандарты на форму и размер образцов, на конструктивные варианты способов их нагружения, на процедуры самих испытаний.  [c.47]

Из внешних воздействий укажем также на коррозию мета.11ЛОВ и бетона. Это сложный физико-химический процесс, многие стороны которого до сих пор не вполне ясны даже специалистам физико-химических научных дисциплин. Один из видов коррозии — это всем известное ржавление стали. В этом случае часть материала превращается в порошок. В связи с этим при проектировании нужно учитывать уменьшение площади поперечного сечения стержневого конструктивного элемента. Однако процесс коррозии, начинаясь, как правило, с поверхности, распространяется далее в глубину поли-кристаллического твердого тела. Следствием этого явления мы имеем снижение характеристик прочности и пластичности материала в целом.  [c.64]


Здесь мы рассмот1)им лишь опыт на растяжение стержневого образца. Диаграмма растяжения образца термореактивного полимера напоминает рассмотренную выше диаграмму деформирования образца материала ограниченной пластичности. Она не имеет ниспадающего участка, потому что в ходе растяжения стержня не достигается стадия образования шейки, а относительная остаточная деформация 8 к моменту разрыва не превышает нескольких процентов. Наибольшее напряжение при испытании назовем пределом прочности  [c.65]

Эксперименты по растяжению (или сжатию) стандартных образцов материалов являются испытаниями на прочность. Результаты этих испытаний позволяют ранжировать материалы по прочности. Это с одной стороны. С другой стороны, такие образцы можно рассматривать в качестве моделей реальных стержневых элементов машин и сооружений. В этом случае результаты упомянутых экспериментов позволяют сформулировать два фундаментальных закона. Согласно первому стержневой элемент по мере роста нагрузки всегда обнаруживает стадию упругого деформирования (с одновременным выполнением закона Гука), стадию упругопластического деформирования и стадию разрушения. Последняя может включать, а может и не включать подстадию образования шейки.  [c.67]

Для статически определимой стержневой системы условие прочности будет выполнено, если условие (2.5.2) не нарушается ни для одного из элементов. Действительно, если хотя бы для одного элемента при некотором значении силы Р условие (2.5.2) нарушается, достаточно увеличить эту силу в п раз, чтобы вся система в целом потекла или разрушилась. В статически определимой системе разрушение одного из стержней или переход его в пластическое состояние превращает систему в механизм, получающий свободу деформироваться неограниченно. Последнее слово употреблено онять-таки в условном смысле. Возможность неограниченной деформации пластического материала относится к случаю идеальной пластичности, реальные материалы обладают упрочнением. С другой стороны, даже система из идеально-пластических стержней при увеличении деформации меняет форму, в результате чего иногда не всегда) увеличение деформации требует увеличения нагрузки.  [c.55]

К аналогичным результатам приводят и результаты испытаний на растяжение [4, 34] или на ползучесть при постоянной нагрузке [8] стержневого композита А1 — Al Ni. Образующаяся в процессе направленной кристаллизации поверхность раздела упрочнитель — матрица обеспечивает в этом композите эффективную передачу нагрузки от матрицы к армирующей фазе. Как и для системы AI — СиАЬ, прочность здесь может быть рассчитана на основе  [c.258]

Сила ] совершает медлетшое вращательное двихение в плоскости стержневой конструкции. Определить иа условия прочности угол V. при котором ко-2 нструкпйя Судет тлеть наименьший вес. Площади се нениЛ стержней одкнаковн.  [c.16]

Значительным вкладом в учение о прочности явились работы по механике стержневых систем акад. АН УССР К. К. Симинского, который также был пионером по исследованию в нашей стране прочности камней и древесины.  [c.12]


Смотреть страницы где упоминается термин Стержневые Прочность : [c.86]    [c.124]    [c.125]    [c.62]    [c.4]    [c.285]    [c.111]    [c.258]    [c.259]    [c.261]    [c.326]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.83 ]



ПОИСК



412, 413 стержневые

Расчет на прочность стержневых элементов конструкций

Расчет стержневых систем на прочность

Расчеты стержневых систем, основанные на теориях прочности



© 2025 Mash-xxl.info Реклама на сайте