Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О численном решении интегральных уравнений плоской теории упругости

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]


Приведем теперь результаты решения задач по определению коэффициента интенсивности напряжений экстраполяционным методом ГИУ (см. 14). Для численной реализации были написаны программы решения плоских и пространственных задач теории упругости методом интегральных уравнений (14.9), полученных на основе решения Кельвина [77]. Решение уравнения осуществлялось методом последовательных приближений с предварительной регуляризацией сингулярного интеграла по формуле (14.14).  [c.112]

Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]

В данной главе изложен алгоритм [95, 102] расчета статической траектории распространения исходной внутренней трещины, базирующийся на решении плоской задачи теории упругости для тел с криволинейными разрезами. Приложенная к телу нагрузка и форма исходной трещины удовлетворяют некоторым условиям симметрии, так что оба ее конца развиваются одинаково. В этом случае траектория может быть построена без учета зависимости скорости роста трещины от коэффициента интенсивности напряжений в ее вершине. Аналогично может быть рассмотрено распространение краевой или полубесконечной трещины при действии любой несимметричной нагрузки. Изучены случаи развития исходной прямолинейной или двух сдвинутых параллельных трещин в бесконечной плоскости при действии растягивающих усилий на бесконечности или растягивающих сосредоточенных сил. Задачи на каждом этапе сводятся к сингулярному интегральному уравнению для гладких контуров, численное решение которого находится методом механических квадратур.  [c.41]


Книга знакомит читателя с применением нового метода численного решения задач механики — так называемого метода граничных интегральных уравнений. Этот метод, которому в последние годы уделяется все возрастающее внимание, позволяет эффективно решать при помощи ЭВМ сложные задачи, возникающие в инженерной практике. Он дает возможность понижать размерность задач, что служит основным его преимуществом перед другими численными методами. Применение метода демонстрируется на решении плоских и пространственных задач гидродинамики, теории упругости, пластичности, механики разрушения, механики горных пород, нестационарной теории теплопроводности.  [c.4]

В настоящей статье производится вывод граничного интегрального уравнения для трехмерных задач теории упругости, основанный на параметрическом представлении геометрической конфигурации и функций и численном интегрировании. Эти параметрические представления являются обобщением на-трехмерный случай представлений, уже оказавшихся эффективными при решении плоских задач теории упругости [5, 6]. Упругое тело разбивается на подобласти, что позволяет получить матрицу ленточного типа, в силу чего ее приведение выполняется легче, чем приведение матриц, полученных в предыдущих исследованиях. Коэффициенты системы уравнений хранятся в файлах внешней памяти и используется поблочное решение это позволяет экономно рассматривать большие задачи.  [c.112]

О численном решении интегральных уравнений плоской теории упругости. Уравнение (9 ) или эквивалентная ему система (9") 98 благодаря своей простоте могут с успехом служить для численного решения соответствующих граничных задач плоской теории упругости. Один из способов численного решения намечен в заметке автора 121] и более подробно изучен А. Я. Горгидзе и А. К. Рухадзе [1], которые проверили этот способ на некоторых примерах, а также дали оценку погрешности.  [c.369]

Полученные в первой главе сингулярные интегральные уравнения основных граничных задач плоской теории упругости справедливы как для гладких, так и для ломаных и ветвящихся разрезов и кусочно-гладких граничных контуров. Однако в случае упругих областей с угловыми точками свойства интегральных уравнений усложняются, что требует их дополнительного исследования. Если для областей, ограниченных гладкими контурами, с гладкими криволинейными разрезами сингулярные части ядер интегральных уравнений содержат только ядро Коши, то в них также имеются слагаемые с неподвижными особенностями. При этом искомые решения имеют в угловой точке две различные осо-бенности степенного типа, соответствующие симметричному и антисимметричному распределению напряжений относительно бис- сектрисы клиновидной области. Это обстоятельство очень усложняет численное решение интегральных уравнений. Поэтому в численном анализе часто используют приближенные подходы, не учитывающие особенности в угловых точках или же учитывающие только одну особенность высшего порядка (см., например, работы 95, 146, 156]). Обзор исследований по решению задач теории упругости для областей с угловыми точками имеется в работах [47, 75].  [c.60]

К сингулярным интегральным уравнениям (IX.74) и (IX.77) в общем случае геометрии оболочки и формы разрезов могут быть применены методы численного решения, xopoujo развитые в плоской задаче теории упругости для тел с трещинами (см. параграф 2 главы II). Дополнительные трудности возникают при вычисле1П1и фундаментального решения Ф (х, у) и его производных, через которые выражаются ядра уравнений. В дальнейшем на примерах кругового отверстия, прямолинейной и дугообразной треид.ин будет рассмотрен асимптотический метод решения уравнений (IX.74) при малых значениях параметра Я, характеризующего пологость обо лочки.  [c.287]

Задача (й, р) в упругой постановке изучалась в [13], где исследовались вопросы корректности и методы решения, связь с задачей аналитического продолжения и с задачей тензометрии. Показано, что эта задача относится к условно корректным и может быть сведена к задаче Коши для бигармонического уравнения (в плоском случае) или для уравнений Ламе, либо для системы Бельтрами-Митчела (в пространственном случае). В [14-17] использовалось представление общего решения теории упругости через голоморфный вектор, удовлетворяющий системе уравнений Моисила-Теодореску это позволило свести задачу (w, р) к задаче продолжения голоморфного вектора, которая, в свою очередь, приведена к интегральному уравнению, численное решение которого строилось без процедур регуляризации, что обосновано сопоставлением с точным решением тестовой задачи. В [12, 18] рассматривалась идеально упругопластическая задача (w, р), где также исследовались вопросы корректности, построения алгоритмов решения и их численной реализации на конкретных примерах (нахождение пластических зон вокруг эллиптических и круговых отверстий при полном и неполном охвате  [c.778]


В работе А. И. Каландия [10] предлагается способ, позволяющий находить приближенное решение некоторых задач об изгибе тонких пластинок, а также плоских задач теории упругости, когда упругая среда занимает полукруг. Задача решается приведением к некоторому сингулярному интегральному уравнению и последующим применением к этому уравнению численного метода решения в работе способ изложен применительно к задаче изгиба пластинки, имеющей форму полукруга, когда пластинка заделана но полуокружности и свободна по диаметру.  [c.600]

Р. Я. Ивановой [23] была рассмотрена задача о качении вязкоупругого цилиндра по основанию из того же материала. Задача решалась в плоской постановке при исходных физических интегральных зависимостях наследственного типа. Предполагалось, что движение катка начинается в момент времени —оо и продолжается с постоянной скоростью объемное последер вие отсутствует. Путем привлечения принципа Вольтерра задача решалась в рамках теории упругости с помощью метода Н. И. Мусхелишвили [38]. Полученные при этом два сингулярных уравнения типа Фредгольма содержат реологический оператор, который выражается через резольвенту ядра наследственности при сдвиге. После введения подвижной системы координат и замены дуги окружности катка дугой параболы одно из этих интегральных уравнений, которое соответствует мнимой части соотношения Мусхелишвили, удалось привести к форме, даюшей возможность решить его по методу Карлемана. Для конкретности резольвента ядра наследственности была взята в внде совокупности простых экспоненциальных ядер. Даже в этом случае получение численного результата было связано со значительными вычислительными трудностями. Решение выписано в квадратурах вычисление их осуществлялось приближенно применительно к материалам, обладающим достаточно большим временем релаксации.  [c.403]

Поля напряжений, создаваемые линейным распределением нагрузки, действующим в прямоугольной и треугольной областях, аналитически найдены в работах А. Я- Александрова и его сотрудников. Библиографию см. в работе Александров А. Я. Решение плоских и пространственных основных задач теории упругости путем численной реализации метода интегральных уравнений. — В кн. Механика деформируемого тела. — М. Наука, 1б86, с. 9—23. — Прим. ред.  [c.70]


Смотреть страницы где упоминается термин О численном решении интегральных уравнений плоской теории упругости : [c.208]    [c.267]    [c.182]    [c.238]    [c.674]    [c.278]   
Смотреть главы в:

Некоторые задачи математической теории упругости Изд5  -> О численном решении интегральных уравнений плоской теории упругости



ПОИСК



Интегральное уравнение теории

Интегральные Численное решение

Интегральные уравнения теории упругости

К упругих решений

Решение интегральных уравнений

Решения плоские

Теории Уравнения

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения интегральные

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости

Численное решение уравнений

Численные решения



© 2025 Mash-xxl.info Реклама на сайте