Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь — Свойства обработка

В купроксных выпрямителях таким веществом является закись меди. Выпрямительный элемент состоит из двух шайб — медной и свинцовой. Медная изготовлена из рафинированной (очищенной) меди в результате специальной обработки одна из ее поверхностей покрыта тонким слоем закиси меди. На эту поверхность плотно накатывается свинцовая шайба. В том место, где чистая медь переходит в закись меди, обнаруживаются свойства полупроводника. При пропускании тока от свинцовой шайбы к медной сопротивление электрическому току малое, а при обратном направлении тока оно возрастает в сотни раз, т. е. ток почти не проходит. Таким образом, меднозакисный элемент обладает вентильным свойством, т. е. способностью пропускать ток только  [c.182]


Указать, можно ли повысить относительное удлинение такой меди, рекомендовать режим обработки и объяснить, как изменяются при этом механические свойства (прочность, твердость, пластичность).  [c.254]

Прочность и технологические свойства меди сильно понижаются при наличии висмута, свинца, серы и кислорода, которые являются вредными примесями. Действие висмута и свинца аналогично действию серы в стали они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии. Поэтому допускается содержание висмута 0,002%, а свинца 0,005%. Сера и кислород уменьшают пластичность меди.  [c.357]

Свинец сильно снижает пластические свойства меди. При горячей обработке давлением медь, содержащая свиней, легко разрушается.  [c.62]

Рассмотрим влияние содержания меди и третьих элементов на свойства двойных сплавов AI — Си и на термическую обработку этих сплавов.  [c.575]

Медь хорошо обрабатывается как в холодном, так и в г оря-чем состоянии, но обладает плохими литейными свойствами. Свойства меди в значительной степени зависят от условий ее производства, механической и термической обработки и наличия примесей. Наименьшее количество примесей содержит медь марки МО (99,95% Си), а наибольшее количество примесей — медь марки М4 (99,00% Си).  [c.246]

Сера образует с медью эвтектику Си — u S, которая отрицательно влияет на механические свойства металла, снижая его пластичность при холодной и горячей обработке.  [c.247]

Бронзы — сплавы меди, с оловом, кадмием, бериллием, алюминием, кремнием и другими металлами и металлоидами. В большинстве случаев бронзы имеют высокие литейные качества, а также антикоррозионные и антифрикционные свойства. Диаграмма состояния системы сплавов Си—Be приведена на рис. 175. Растворимость бериллия при температуре 20° С мала (0,2%), но увеличивается до 1,4% при нагреве до 570° С. Ограниченная растворимость в твердом состоянии позволяет производить термическую обработку бериллиевых бронз (закалку и старение). Упрочняющей является v-фаза (СиВе). В приборостроении широкое распространение нашла бериллиевая бронза,  [c.267]

Наименьшим удельным сопротивлением р обладает химически чистая медь. Наличие примесей в меди отрицательно влияет не только на ее механические и технологические свойства, но и значительно снижает электропроводность. Наиболее нежелательными примесями являются висмут и свинец, которые почти нерастворимы в меди и образуют легкоплавкую эвтектику, которая при кристаллизации меди располагается вокруг зерен. Даже тысячные доли процента висмута и сотые доли процента свинца приводят к тому, что медь при обработке давлением при температуре 850— 1150°С растрескивается. Наличие серы приводит к уменьшению пластичности. Такая медь при низких температурах становится хрупкой. Очень вредно присутствие в составе меди и кислорода, который способствует образованию оксида и закиси меди, вызывающих повышение удельного сопротивления.  [c.119]


Осаждение покрытия происходит в том случае, если материал является катализатором для восстановительной реакции. Ввиду того, что углерод не является катализатором реакции восстановления ионов меди, никеля, поверхность углеродных волокон необходимо предварительно обработать, придав ей каталитические свойства. С этой целью углеродные волокна подвергают обработке в окислительной среде и проходят стадию сенсибилизации и активации прежде, чем покрываются из химического раствора металлом. Поверхностная обработка в окислительной среде положительно сказывается и на свойствах углеродного волокна при работе в композиционном материале повышается сила сцепления с основой, увеличивается прочность композиции на сдвиг [5].  [c.148]

В стоматологии применяются преимущественно низколегированные золотые сплавы, например 20-каратный сплав с 10% Ag, 83,3% Au и 6,7% Си, 18-каратный сплав с 16% Ag, 75% Au и 9% Си, сплавы золота с 10% платины, палладия или серебра. Эти твердые сплавы имеют хорошие механические свойства и поддаются термической обработке. Наряду с золотыми и платиновыми сплавами применяются экономичные золотые сплавы, содержащие более 50% Au, до 10% Pd, остальное серебро и медь. Используются также и белые Pd—Ag-сплавы с добавкой золота и без него.  [c.149]

О влиянии термической обработки КЭП -на основе меди на их механические свойства можно судить по данным табл. 13.  [c.116]

Таблица 13. Влияние термической обработки КЭП на основе меди на механические свойства покрытий Таблица 13. <a href="/info/58155">Влияние термической обработки</a> КЭП на <a href="/info/498174">основе меди</a> на механические свойства покрытий
Перспективным материалом с точки зрения повышенного сопротивления КР до толщины полуфабриката 125 мм является в настоящее время разработанный сплав 7049-Т73. Этот сплав с хромом содержит то же количество цинка, что и сплав 7001, и приблизительно то же, что и сплав 7075, количество магния и меди (см. рис. 1). Сплав обладает прочностными свойствами, в значительной степени близкими к свойствам сплава 7079-Т6 на полуфабрикатах толщиной до 125 мм (см. табл. 4, 5). К тому же сплав 7049-Т73 показывает превосходное сопротивление КР на гладких образцах, пороговый уровень напряжений для которых составляет 310 МПа (см. табл. 4, 5). Таким образом, сплав 7049-Т73 обладает такими же механическими свойствами, как сплав 7079-Т6, и сопротивлением КР подобно сплаву 7075-Т73. Кроме того, этот сплав не требует специальной обработки, поэтому могут быть использованы существующие матрицы для штамповок, если требуется перейти от чувствительных к КР материалов (например, 7079-Т6 или 7075-Т6) к более стойкому к КР сплаву 7049-Т73.  [c.267]

Существует принципиальная разница в переносе материала при ИП и фрикционной обработке. При ИП в случае твердого раствора происходит сепарация атомов. Атомы легирующих элементов, растворяясь, уходят в смазку атомы меди, соединяясь в группы, переходят на сталь. Этот процесс происходит медленно, не за один-два прохода. При фрикционной обработке состав перенесенного материала не отличается от исходного. Здесь материал переносится крупинками, которые прочно схватываются со сталью и имеют между собой определенную связь. Глицерин, предохраняя поверхности от окисления, обеспечивает хорошее сцепление медного сплава со сталью. Благодаря схватыванию создается положительный градиент механических свойств медного сплава по глубине. Поверхностные слои сплава приобретают по сравнению с глубинными пониженные механические свойства.  [c.144]

Аустенитные коррозионно-стойкие стали недостаточно износостойки, склонны к задирам и схватыванию при трении. Большинство способов упрочнения их поверхностных слоев не приводит к существенному улучшению антифрикционных свойств или снижает коррозионную стойкость. Стали аустенитного класса в отличие от углеродистых сталей не подвержены омеднению по способу контактного вытеснения меди из растворов ее солей без специальной химической обработки (травление в щелочном растворе с последующей кислотной обработкой). Однако омеднение поверхностей трения этих сталей становится возможным в процессе трения, т. е. в динамических условиях, которые способствуют возникновению термо-ЭДС. Для достижения этого в воду, служащую смазкой химического аппарата, добавляют водные растворы солей меди. В табл. 33 приведены результаты испытаний колец торцового уплотнения на различных режимах работы со смазкой дистиллированной водой и раствором сернокислой меди.  [c.179]


В первом томе приведены справочные сведения о принципах выбора, областях применения и влиянии методов обработки на служебные свойства цветных металлов и сплавов в машиностроении. Ои содержит также данные о марках, физико-механических и технологических свойствах алюминия, магния, титана, меди, свинца, олова, цинка, кадмия, благородных металлов и их сплавов, а также биметаллов, применяемых в машиностроении.  [c.4]

Сплавы на основе системы А1 — Си с содержанием меди до 6%, упрочненные термической обработкой, характеризуются наиболее высокими механическими свойствами, особенно большим пределом текучести (по сравнению с другими литейными алюминиевыми сплавами). Они также обладают повышенной жаропрочностью, хорошо обрабатываются резанием. К недостаткам этих сплавов следует  [c.86]

Иногда металл (некоторые стали, медь, дюралюминий) после обработки давлением может самопроизвольно изменять свои свойства. Такое явление называется старением. В деформированном металле, склонном к старению, могут при хранении возникать трещины. Поэтому во избежание ухудшения штампуемости при многооперйционной обработке давлением следует стремиться к максимально быстрой передаче заготовки с позиции на позицию с тем, чтобы процесс старения не успевал произойти.  [c.38]

Сплавы викалой являются пластически деформируемыми магнитотвердыми сплавами. До окончания термической обработки викалой по пластичности приближается к меди, а после обработки - к стали. Эти сплавы приобретают магнитные свойства (становятся магнитно-анизотропными) только после холодной деформации на  [c.615]

Длительными наблюдениями установлено, что наиболее рационально обрабатывать циркуляционную воду солями меди периодически. Периодичность обработки устанавливается скоростью снижения концентрации ионов меди в оборотной воде. При снижении концентрации иона меди ниже 0,1 мг/кг альгицидные свойства практически теряются и система вновь может зарасти биологическими отложениями. Для осуществления контроля за процессом купоросирования ежедневно определялось содержание меди в оборотной воде.  [c.153]

Применяют также сплавы N —А1 с добавками кремния (I—2%). Такие сплавы обладают очень высокой коэрцитивной силой (до 640 Э) при умеренной индукции (400—500 Гс) и пониженной критической скоростью охлаждения, что очень существенно при изготовлении массивных магнитов. Добавка меди к сплавам Fe—Ni—Л1 позволяет частично заменить дорогой никель и улучшить свойства сплава. Введение в сплав с 22% Ni до 6% Си повышает Не без снижения Вг. Наиболее высокие магнитные свойства достигаются при одновременном введении меди и кобальта. Последний повышает коэрцитивную силу и остаточную индукцию. Особое внимание следует уделить высококобальтовым сплавам (15—24% Со), которые подвергаются так называемой закалке в. иагнитном поле. Сущность этой закалки заключается в том, что нагретый до температуры закалки (около 1300°С) магнит быстро помещают между полюсами электромагнита (напряженность поля должна быть НС менее 120 ООО А/м) и так охлаждают до температуры ниже 500°С. Дальнейшее охлаждение проводят обычно па воздухе. После такой обработки магнит обладает резкой анизотропией магнитных свойств. Магнитные свойства очень высоки только в том направлении, в котором действовало внешнее магнитное поле в процессе закалки.  [c.546]

Широкое применение имеют железографитовые вкладыши, содержащие 1... 3 % графита (остальное железо). Применяют также бронзографитовые K. ia-дыши, содержащие 10% олова, 1.. 4% графита (остальное медь), но они по споим свойствам мало отличаются от значительно более дешевых железографитовьгх вкладышей. Обработка резанием не рекомендуется возможно калибрование.  [c.379]

Латуни подразделяются на двойные сплавы медн с цинком, в которых содержание цинка доходит до 50 о, и многокомпонентные, имеющие в своем составе также алюминий, железо,, марганец, свинец, никель и другие добавки, повышающие механические и физические свойства латуни. Латуни обладают хорошими механическими свойствами, высоким сопротивлением коррозии, хорошо поддаются механической обработке. Их обозначают буквой Л и условным буквенным обозначением основных компонентов, а также числами, обозначающими среднее содержание меди и компонентов. Например, ЛК80-3 — кремнистая латунь, содержащая 80 меди и 3% кремния (остальное — цинк).  [c.163]

Палладий (Рф - серебристо-белый металл, по внешнему виду напоминающий платину. Он мягок, пластичен и легко поддаётся обработке. Выпускается марок Дц-99,9 и Пд-99,8. По многим свойствам палладий очень близок к платине, а по стоимости дешевле в 4-5 раз, поэтому в ряде случаев служит ее заменителем его используют в электровакуумной технике дая поглощения водорода. Палладий и его сплавы с серебром и медью применяют в качестве контактных материалов. Палладиевую пасту, как и платиновую, испо.пьзуют для нанесения электродов на керамические конденсаторы.  [c.32]

Баббиты - это мягкие антифрикционные сплавы на оловянной, свинцовой, алюминиевой и цинковой основах, в которых равномерно распределены твердые кристаллы (кристаллы - фазы SnSb или кристаллы сурьмы, иглы меди). Баббиты отличаются низкой твердостью (13-23 НВ), невысокой температурой плавления (340-500°С, алюминиевые бронзы - 630-750°С), отлично прирабатываются и имеют низкий коэффициент трения со сталью, хорошо удерживают фаничную масляную пленку. Мягкая и пластичная основа баббита при трении в подшипнике изнашивается бь[стрее, чем вкрапленные в нее твердые кристаллы других фаз, в результате шейка вала при вращении скользит по этим твердым кристаллам. При этом уменьшается площадь фактического касания трущихся поверхностей, что, в свою очередь, снижает коэффициент трения и облегчает поступление смазки в зону трения. Благодаря хорошей прирабатываемости баббитов все неточности поверхностей трения вследствие механической обработки или установки деталей при сборке в процессе обкатки подшипников быстро устраняются. В табл. 1.6 приведены основные свойства и структура баббитов.  [c.22]


Известно, что в процессе приработки металлополимерных сопряжений на металлическом контртеле образуется пленка фрикционного переноса, состав, структура и свойства которой имеют определяющее значение в механизме трения и изнашивания сопряжения. Рассмотрим изменение структурно-фазового состава пленки фрикционного переноса в процессе длительного (до 52 часов) трения. Контртело в виде плоского диска изготавливали из алюминиевого сплава В95, содержащего в качестве легируюи их добавок магний, медь, цинк в количествах от 2 до 6%. Обработка рентгенограмм, снятых после 12, 20 и 32 часов трения, показала, что пленка фрикционного переноса, кроме фторопласта-4, содержит медь и что при этом в полимерной матрице нет кристаллических областей. С увеличением продолжительности трения  [c.99]

Ойи имеют диаметр 50—100 А и толщину в несколько ангстрем. Модель структуры зон Гинье—Престона приведена на рис. 81. Плоскость 100 образованная атомами меди, имеет две соседние плоскости 100, заполненные атомами алюминия и находящиеся друг от друга на расстоянии меньщем, чем расстояние между плоскостями в твердом растворе. Зоны ГП деформируют кристаллическую решетку и тормозят движение дислокаций, в связи с чем сплавы упрочняются. Однако при кратковременном нагреве на 200 — 250° С сплава, прошедшего естественное старение, вследствие диффузии атомов зоны ГП-1 растворяются и сплав приобретает исходные свойства, какие он имел после закалки (низкая прочность, высокая пластичность) (см. рис. 80, б). Такой процесс, происходящий в сплавах, называется возвратом. После обработки на возврат сплав вновь способен упрочняться путем естественного старения. Явление возврата широко  [c.110]

Легкие сплавы делятся на. ттейные и деформирусмь/с. Vli алюминиевых литейных сплавов наиболее распространены силумины (АЛ2, АЛ4 и др.), т. е. сплавы, в которых кремния содержится до 20%. Эти сплавы обладают высокими литейными свойствами и хорошо обрабатываются резанием. Из алюминиевых деформируемых сплавов основное применение имеют дюралю-мины (Д1, Д16 и др.) — сплавы, содержащие алюминий, медь, магний и марганец. Заготовки деталей машин из этих сплавов получают обработкой давлением.  [c.40]

Магнитотвердые материалы типа А1—Ni—Со представляют собой сплав железа с никелем (12—26 %), кобальтом (2—40 %) и алюминием (6—13 %), содержащие, кроме того, с целью улучшения магнитных свойств легирующие добавки меди (2—8 %), титана (0—9 %) и никеля (0—3 %). Сплавы, содержащие более 15 % кобальта, подвергают термомагнитной обработке, которая заключается в охлаждении сплава от высоких температур 1250—1300 °С в сильном магнитном поле, при этом возникает магнитная текстура и сплав становится магнитоанизотропным. Изотропные сплавы имеют магнитную энергию l max ДО 6 кДж/м , анизотропные — до 16 кДж/м .  [c.107]

Как правило, нет элементов, вредных вообще. Только в отдельных случаях имеет место ухудшение одного свойства от влияния любого элемента или ухудшение многих свойств вследствие действия одного элемента. Примером такого исключения может служить факт понижения электропроводности меди при легировании любым элементом, включая более электропроводное серебро. Свинец вреден для многих металлов и сплавов, поскольку он ухудшает пластичность, но он несомненно полезен для обработки резанием. Антифрикционные сплавы, как правило, содержат свинец. Сера в никеле вредна, потому что сообщает горячеломкость, но для непассивирующихся никелевых анодов она полезна, так как способствует их равномерному растворению. Углерод понижает пластичность многих металлов, но может повысить ее, если они содержат кислород. Кислород оказывает полезное влияние при горячей деформации металлов, если он связывает вредные примеси в тугоплавкие или летучие оксиды, очищая границы зерен. Многие полезные добавки улучшают пластичность при введении в малых количествах потому, что очень ограниченно растворимы в металле и, находясь по границам зерен, взаимодействуют с межкристаллитными вредными примесями. Однако в этом случае даже небольшой избыток полезной добавки может вызвать межкристаллитную хрупкость. Тогда полезная добавка окажется вредной примесью, а дополнительное введение вредной примеси— полезным.  [c.201]

В общем случае под анизотропией акустических свойств металла понимают изменение скорости распространения и коэффициента затухания в зависимости от кристаллографического направления. Она обусловлена анизотропией механических свойств (модуля упругости, пределов прочности и пластичности и др.). Рассмотрим причины анизотропии акустических свойств. Одна из них — это структура материала. Она наиболее ярко проявляется в металлах с крупнозернистой структурой, имеющих транскри-сталлитное строение, т. е. когда кристаллиты имеют упорядоченное строение и их продольные размеры больше поперечных. Примером могут служить титан, аустенитные швы, медь. Вторая причина —термомеханическое воздействие в процессе изготовления проката, которое делает его структуру слоистой, так как волокна металла и неметаллические включения в процессе деформирования оказываются вытянутыми вдоль плоскости листа. Третья —локальная термическая обработка материала, которая обусловливает возникновение напряжений и, как следствие, изменение механических свойств материала.  [c.317]

Остановимся на важнейшем двухкомпонентном сплаве сплаве алюминия с медью. Добавка меди к алюминию дает твердый раствор. Он насыщается при 5,77о Си. Медь определяет поведение сплава при термической обработке, его физические и технологические свойства. При большом содержании меди появляется эвтектика, состоящая из твердого раствора и химического соединения СиАЬ. На основе этого сплава разработаны различные марки дюралюминия.  [c.52]

Самосмазывающиеся покрытия. Такие покрытия получают соосаждением графита из сульфатных или ци-анидных электролитов. При высоких плотностях тока содержание -графита достигает 75% (о б.). Однако они -быстро изнашиваются при сухом истирании стальным диском для улучшения свойств их периодически прессуют. При низких (ПЛОТНОСТЯХ тока образуются покрытия, содержащие около 10% (об.) графита и не требующие последующей обработки. Для получения самосма-зываемых КЭП на основе меди кроме графита применяют другие частицы [1, с. 82—87 12, 14 16 19 20 37].  [c.146]

Как известно, пластмассы поддаются всем видам обработки резанием, которые выполняют на обычных металлорежущих станках. Этим методом изготавливают обычно уплотнители из капро-лона, фторопласта, поликапролактама и т. д. Для получения необходимого качества уплотнительной поверхности очень важен выбор режима резания и инструмента, причем при обработке рекомендуется учитывать специфические физико-механические свойства пластмасс низкую теплопроводность, относительную мягкость и др. Скорости резания и подачи, глубина резания для большинства пластмасс остаются приблизительно равными величинами, принятыми при обработке латуни и меди.  [c.66]

Явление переноса металла при трении лежит в основе новых технологических процессов обработки поверхностей трущихся деталей фрикционного латунирования, бронзирования и меднения. Суть этих методов состоит в том, что стальные детали для предохранения от схватывания перед сборкой покрывают тонким слоем латуни, меди или бронзы. В процессе работы тонкие слои антифрикционных металлов улучшают приработку деталей и повышают их протнвозадирные свойства. Нанесение покрытий фрикционным методом не требует специального оборудования и высокой квалификации рабочего и может быть произведено на обычном токарном станке (рис. 73).  [c.143]


Детали из сплава АЛб применяют в литом состоянии, так как эффект термической обработки незначителен. Для снятия внутренних напряжений применяют отжиг при 300 10° С в течение 2—4 ч. Применение деталей из сплава АЛ6 в литом состоянии объясняется .1едостаточным легированием твердого раствора медью и грубой формой кристаллизации кремния. Сплав АЛ6 имеет удовлетворительные литейные свойства, герметичность, свариваемость и обрабатываемость резанием. Его недостатками являются низкие механические свойства и пониженная коррозионная стойкость. Детали из этого сплава можно защищать анодированием в серной кислоте. Сплав АЛ6 нашел применение для литья малонагруженных агрегатных деталей и аппаратуры машиностроения, работающей при температуре, не превышающей 225° С.  [c.89]


Смотреть страницы где упоминается термин Медь — Свойства обработка : [c.337]    [c.328]    [c.59]    [c.310]    [c.342]    [c.24]    [c.156]    [c.237]    [c.289]    [c.202]    [c.74]    [c.90]   
Краткий справочник металлиста (1972) -- [ c.691 ]



ПОИСК



Медиана

Медь — Обработка

Медь — Свойства



© 2025 Mash-xxl.info Реклама на сайте