Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связь компонентов напряженного состояния с компонентами скорости деформации

Связь компонентов напряженного состояния с компонентами скорости деформации  [c.134]

В гл. V было показано, что на базе этих допущений могут быть получены равенства (5-18), устанавливающие связь компонентов напряженного состояния с компонентами скорости деформации.  [c.380]

Первые работы в области исследования пластических деформаций принадлежат Сен-Венану и относятся к 1870 г. Несколько раньше учеными Леви и Мизесом была разработана теория пластического течения, показывающая связь между компонентами напряжения и компонентами скоростей деформаций. Авторы теории ввели допущение о совпадении главных осей напряженного состояния с главными осями скоростей деформации. В основу теоретических предпосылок было поставлено условие текучести Треска. Первые экспериментальные исследования для обоснования этой теории были проведены в 1926 г. Лоде, который испытывал трубы при совместном действии растяжения и внутреннего давления. Эксперимент подтвердил предпосылки теории, обратив внимание на вероятное отклонение опытных данных. Последующая экспериментальная проверка подтвердила нестабильность совпадения экспериментальных и теоретических исследований. Однако ввиду недостаточного количества исследований какие-либо коррективы в предложенную теорию пластического течения пока не внесены. В 1924 г. Генки предложил систему соотношений между напряжениями и деформациями в пластической зоне. Хилл отметил ряд недостатков в этих соотношениях они не описывали полностью пластического поведения материалов и были применимы только для активной деформации. При малых деформациях, когда нагрузка непрерывна, теория Генки близка с экспериментальными данными.  [c.103]


Действительно, первые три уравнения в (3.36) — это уравнения равновесия, только напряжения выражены с помощью физических уравнений через скорости. Остальные шесть уравнений объединяют физические уравнения состояния и геометрические уравнения связи скорости течения с компонентами тензора скорости деформации.  [c.93]

Однако в самом общем случае пластического формоизменения, в основном конечного (значительного), и, в частности, при обработке металлов давлением главные оси напряжений могут не совпадать с главными осями деформаций, вид напряженного состояния может не соответствовать виду деформации, а характер нагружения не может быть отнесен к категории простого, так как вследствие значительного формоизменения координаты точек приложения внешних сил изменяются во времени. Поэтому в общем случае пластического формоизменения отсутствует гарантия однозначности протекания процесса деформации или, как это принято называть, монотонность процесса, и непосредственно связь деформаций с напряжениями установить невозможно. В этом случае устанавливается связь напряжений со скоростью деформации. Скоростью деформации или компонентом скорости деформации называется относительная деформация прямолинейного отрезка I в направлении координатных осей, происходящая в течение весьма малого промежутка времени,  [c.12]

Строгое обоснование условия пластичности для произвольного деформированного состояния было дано Р. Мизесом (1913 г.) в работе [59]. В дальнейшем это условие получило экспериментальное подтверждение и используется в современной теории пластичности. В частном случае плоской деформации условие пластичности Мизеса переходит в условие пластичности Сен-Венана. В этой же работе Р. Мизесом была получена система уравнений, описывающая пространственное течение пластической среды. Однако, в отличие от уравнений Сен-Венана-Леви, в этих уравнениях связь компонент напряжения с компонентами скоростей деформации была записана в форме соотношений гидродинамики, в которых коэффициент пропорциональности (аналог коэффициента вязкости в гидродинамике) определялся из условия пластичности.  [c.10]

Принцип возможных перемещений и принцип минимальной дополнительной работы для материалов с нелинейной связью между напряжениями и деформациями или напряжениями и скоростями деформаций. В этом параграфе мы рассмотрим вариационные принципы для работы (приложимые к ряду твердых тел общего вида, которые рассматривались ранее) и попытаемся сформулировать их для случаев, когда варьируются либо составляющие смещений, либо напряженное состояние тела. Для определенности предположим, что рассматривается несжимаемая среда, в которой компонентами бесконечно малой пластической деформации являются Yyz. , что дифференциалы этих компонент выражаются в виде  [c.170]


При установившейся ползучести общие пространственные уравнения ползучести аналогичны по структуре уравнениям деформационной теории пластичности с упрочнением. С другой стороны, кинематические гипотезы, лежащие в основе теории как упругих, так и упруго-пласти-ческих оболочек, не связаны со свойствами материала и потому применимы также для состояния установившейся (и неустановившейся) ползучести оболочек. Поэтому можно сразу же получить определяющие уравнения для ползущей оболочки из уравнений (1), заменив в них всюду компоненты деформации срединной поверхности бд, е ,. . ., т соответствующими скоростями бц, 83,. ... т и приняв в качестве функции упрочнения 0( = О (е ) надлежащую зависимость между интенсивностями напряжений и скоростей деформаций ползучести, например, степенной закон  [c.114]

При переходе к сложному напряженному состоянию обычно принимают, что объемная вязкость отсутствует, тогда компоненты скорости деформации (см. гл. 1) связаны с компонентами напряжения обобщенным законом Ньютона  [c.133]

Неправильный режим нагрева и охлаждения изделия в процессе сварки плавлением может стать причиной появления таких серьезных дефектов сварки, как трещины, непровары, подрезы и др. Тепловое состояние металла, шлака и других компонентов, взаимодействующих в процессе образования сварного соединения, в значительной мере обусловливает характер, направление н скорость протекания всех физико-химических и металлургических процессов. Величина и характер деформаций и напряжений, возникающих в конструкциях при сварке, зависят, главным образом, от цикла нагрева и охлаждения изделия, от характера температурных полей. Особенностями распределения тепла, скоростями отвода тепла и охлаждения места сварки определяется структура металла шва и различных участков основного металла, прилегающих к шву. Наконец, с тепловыми процессами непосредственно связаны такие важнейшие характеристики сварки, как скорость нагрева металла, скорость расплавления, производительность сварки и ее техникоэкономическая эффективность.  [c.95]

Уравнение (4.78) основано на предположении, что диффузия тепла определяется законом Фурье. В выписанной системе зависимостей переменными являются составляющие скорости давление и температура. Они должны удовлетворять основным уравнениям (4.73), (4.75) и (4.77) и граничным условиям. Такая формулировка является полной в том смысле, что имеется достаточное количество уравнений. Однако, так как уравнения нелинейны, за исключением относительно простых задач, приходится прибегать к численному решению. Заметим, что в рассматриваемом случае поток является баротропным, т. е. механическое и тепловое поведение не связаны друг с другом, и мы имеем десять уравнений (три уравнения количества движения, уравнение неразрывности, шесть уравнений, связывающих напряжения со скоростями деформаций) и десять неизвестных (шесть компонентов напряжений, три проекции скорости и давление). Для сжимаемого потока давление и плотность связаны уравнением состояния.  [c.148]

Если к этим равенствам добавить еще условия равновесия любой мысленно выделенной частицы тела, а также условия отсутствия внешних сил на его свободной поверхности, то мы получим возможность определить все компоненты напряженного состояния в любой интересующей нас точке. Вместе с тем в вопрос о полноте решения задач при принятии гипотезы идеально пластического состояния данного тела необходимо здесь же внести определенную ясность. Не надо забывать о том, что даже при очевидной приемлемости гипотезы идеальной пластичности точное решение задачи определения напряженно-деформированного состояния пластически формоизменяемого тела должно обращать в тождество уравнения равновесия (4-3), равенство (3-37), (т. е. условие несжимаемости), а также равенства (5-18) и (5-19), устанавливающие связь напряжений со скоростями деформации.  [c.137]


Одних только уравнений движения сплошной среды в напряжениях и уравнений несжимаемости недостаточно для нахождения поля скоростей (или поля смещений). Для определенности задачи необходимо еще охарактеризовать соотношение между компонентами тензора скоростей деформации (или тензора деформации или, в общем случае, некоторого кинематического тензора, построенного с помощью этих тензоров) и компонентами тензора напряжений, причем эти соотношения должны обладать некоторыми свойствами, определяемыми тензорностью величин. Связь между напряжениями, деформациями и их производными по времени называется уравнением (функцией) реологического состояния. Важным частным случаем уравнения состояния является уравнение течения, которое определяет собой зависимость между скоростями деформаций и напряжениями. Ниже рассматриваются, во-первых, задачи в условиях простого напряженного состояния, когда существует лишь одна составляющая тензора напряжений и соответствующая ей составляющая тензора скоростей деформаций, во-вторых (за исключением, когда это особо не оговаривается), только те случаи, когда скорость деформации — непрерывная однозначная 12  [c.12]

Результаты. многочисленных экспериментов показывают, что большинство твердых тел способно выдержать, без разрушения большие всесторонние напряжения. В то же врекя значительно мень-пше по величине напряжения сдвига вызывают разрушение тела. В связи с этим разделение тензора напряжений на шаровой тензор la и девиатор существенно облегчает рассмотрение напряженного состояния тела, йоскольку тензор Ti , вызывающий дилатацию может быть связан с шаровым тензором деформаций или шаровым тензором скоростей деформаций, а тензор D , вызывающий дистор-сию, соответственно с девиаторами деформаций или скоростей деформаций. Выделение давления полезно еще и тем, что позволяет строить уравнение состояния вещества, непрерывно переходящее в уравнение состояния жидкости в условиях, когда компоненты тензора девиатора напряжений становятся пренебрежимо малы по сравнению с Р.  [c.16]

Что касается других сред, рассмотренных в 12 главы I, то дифференциальные уравнения движения таких сред можно выразить через составляющие вектора скорости лишь в тех случаях, когда соотношения, связывающие напряжённое состояние с состоянием деформаций, могут быть разрешены относительно всех компонент напряжений. Во всех других случаях необходимо соотношения связи напряжени " е деформациями рассматривать совместно с дифференциальными уравнениями движения среды в напряжениях.  [c.93]


Смотреть страницы где упоминается термин Связь компонентов напряженного состояния с компонентами скорости деформации : [c.211]    [c.153]    [c.16]   
Смотреть главы в:

Сопротивление материалов пластическому деформированию  -> Связь компонентов напряженного состояния с компонентами скорости деформации



ПОИСК



130 — Компоненты состоянии

Деформации компоненты

Деформации компоненты скоросте

Деформации скорость

Компонент деформации

Компоненты деформации напряженного состояния

Компоненты скорости

Напряженное состояние — Компоненты



© 2025 Mash-xxl.info Реклама на сайте