Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория излучения черного тела

Теория излучения черного тела [1]  [c.25]

В свое время задача о вычислении универсальной функции p(v, Т) вызвала значительные затруднения у физиков. Однако благодаря Планку, который для нахождения правильного решения ввел так называемую гипотезу о световых квантах, она была полностью решена. Поэтому теория излучения черного тела является одной из фундаментальных основ современной физики.  [c.27]

НОРМАЛЬНЫЕ МОДЫ И ФОНОНЫ ТЕПЛОЕМКОСТЬ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ ТЕПЛОЕМКОСТЬ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ МОДЕЛИ ДЕБАЯ И ЭЙНШТЕЙНА СРАВНЕНИЕ РЕШЕТОЧНОЙ И ЭЛЕКТРОННОЙ ТЕПЛОЕМКОСТЕЙ ПЛОТНОСТЬ НОРМАЛЬНЫХ МОД (ПЛОТНОСТЬ ФОНОННЫХ УРОВНЕЙ) АНАЛОГИЯ С ТЕОРИЕЙ ИЗЛУЧЕНИЯ ЧЕРНОГО ТЕЛА  [c.79]


АНАЛОГИЯ С ТЕОРИЕЙ ИЗЛУЧЕНИЯ ЧЕРНОГО ТЕЛА  [c.94]

Аналогия между фотонами и фононами, описанная на стр. 80, может быть продолжена — существует соответствие между теорией равновесного теплового электромагнитного излучения (т. е. теорией излучения черного тела ) и теорией колебательной энергии твердого тела, которую мы только что рассмотрели. В рамках классической физики, господствовавшей на рубеже нашего столетия, в обоих задачах возникали неразрешимые трудности. Так, если закон Дюлонга и Пти не мог объяснить малые удельные теплоемкости твердых тел при низких температурах, то в классической теории излучения не удавалось получить выражение для плотности энергии излучения твердого тела, которое не приводило бы к бесконечности после суммирования по всем частотам (ультрафиолетовая катастрофа, или катастрофа Рэлея — Джинса). В обоих случаях трудность была связана с тем, что, согласно классическому результату, все нормальные моды должны вносить одинаковые вклады к Т в энергию. Закон Дюлонга и Пти не содержал внутреннего противоречия, присущего соответствующему результату теории излучения, лишь потому, что в силу дискретности кристалл имеет конечное число степеней свободы. Мы сравниваем две теории в табл. 23.4.  [c.94]

В 1913 г. Бор применил квантовую гипотезу к атомным системам и вывел теоретически наблюдаемый спектр атома водорода. Ранее спектр был описан уравнением, содержащим эмпирическую постоянную Ридберга, которую по теории Бора можно вычислить с помощью известных физических постоянных, включая постоянную Планка h. Успех квантовой гипотезы в объяснении излучения черного тела и спектра атомарного водорода обеспечил твердую основу для развития новой механики, которая может дать все результаты классической механики и правильные ответы на вопросы, которые классическая механика не могла разрешить.  [c.71]

Таким образом, соображения, основанные на представлении о стационарных состояниях атомов и об излучении атомов как результате перехода атома из одного квантового состояния в другое, позволяют получить закон излучения черного тела. Однако элементарная теория излучения весьма несовершенна. Ее основным недостатком является невозможность вычисления коэффициентов Эйнштейна. Отношение коэффициентов (11.34) приходится находить с использованием аргументов, лежащих вне рамок теории. Лишь последовательная квантовая теория позволила теоретически вычислить коэффициенты Эйнштейна.  [c.75]


Теория излучения. В II излучение черного тела было рассмотрено полу-классическим способом. При этом оказалось невозможным в рамках квантового расчета определить коэффициенты Эйнштейна для вероятностей квантовых переходов. Лишь воспользовавшись принципом соответствия, т.е. путем замены классических величин квантово-механическими, удалось найти коэффициенты Эйнштейна.  [c.170]

На основании теории квант Планк нашел соотношение, определяюш,ее интенсивность излучения черного тела (закон Планка)  [c.250]

Несовершенство классической теории проявилось в том, что она не дает возможности предсказать распределение энергии излучения по различным длинам волн. Это явилось отправной точкой для революционного открытия Планка, который ввел гипотезу о квантах действия. Однако даже без квантовой теории можно кое-что сказать о распределении интенсивности так называемого излучения черного тела.  [c.94]

В простой теории теплоемкости Дебая фононы) г = = 1 величина а1 = а представляет собой поперечную, и бд — продольную скорос ть звука. Для излучения черного тела (фотоны) применяется низкотемпературная теория, причем .= 1, Зг = 2,  [c.98]

Зависимость интенсивности излучения черного тела от длины волны и температуры устанавливается законом Планка, который на основании разработанной им квантовой теории излучения предложил формулу  [c.264]

Поворотным моментом в развитии классической физики стал вопрос об излучении черного тела, т. е. об излучении идеальной полости, находящейся в тепловом равновесии. На практике такое излучение аппроксимируется излучением, выходящим через небольшое отверстие в стенке специальной печи. Классическая физика (главным образом электромагнитная теория Максвелла и статистическая механика) не могла объяснить спектрального распределения этого излучения более того, она предсказывала ультрафиолетовую катастрофу (согласно закону Рэлея —Джин-  [c.71]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]

Теория Лорентца, несмотря на определенные успехи, встретила серьезные трудности. В частности, она не могла объяснить распределения энергии по частотам при тепловом излучении абсолютно черного тела. Эти недостатки теории не были устранены и попытками других ученых (Вин, Рэлей, Джинс). Смелая гипотеза, выдвинутая в 1900 г. Планком, решила проблему спектрального распределения энергии теплового излучения.  [c.8]

Наряду с теми трудностями, к которым приводила электронная теория Лорентца, опиравшаяся на представление о неподвижном эфире, выяснились и другие затруднения этой теории. Она оставляла неразъясненными многие особенности явлений, касающихся взаимодействия света и вещества. В частности, не получил удовлетворительного разрешения вопрос о распределении энергии по длинам волн в излучении накаленного черного тела. Накопившиеся затруднения вынудили Планка сформулировать теорию квантов (1900 г.), которая переносит идею прерывности (дискретности), заимствованную из учения о молекулярном строении вещества, на электромагнитные процессы, в том числе и на процесс испускания света. Теория квантов устранила затруднения в вопросах излучения света нагретыми телами она по-новому поставила всю проблему взаимодействия света и вещества, понимание которой невозможно без квантовой интерпретации. Целый ряд оптических явлений, в частности фотоэлектрический эффект и вопросы рассеяния света, выдвинул на первый план корпускулярные особенности света. Процесс развития теории квантов, ставшей основой современного учения о строении атомов и молекул, продолжается и ныне.  [c.24]


Закон Кирхгофа поставил перед теорией теплового излучения важную задачу — найти аналитическое выражение функции ev, т, представляющей собой испускательную способность абсолютно черного тела.  [c.136]

Зако 1 Стефана — Больцмана дает представление лишь об интенсивности суммарного излучения абсолютно черного тела и совершенно не касается спектрального распределения энергии. Первый существенный результат в этом направлении после работ Михельсона и Голицына был получен Вином (1893), который воспользовался кроме термодинамики еще и электромагнитной теорией света. В результате он установил, что испускательная способность абсолютно черного тела имеет вид  [c.137]

Модель Эйнштейна. Уменьшение теплоемкости при понижении температуры впервые объяснил А. Эйнштейн в 1907 г., использовав развитую М. Планком теорию излучения абсолютно черного тела. Если предположить, что энергия квантового осциллятора с частотой т = и/2я может принимать  [c.37]

Начнем с описания теории излучения черного тела, за которым последует обсуждение различных методов вычисления коэффициентов излучения полостей, близких к черному телу, и обсуждение практической реализации таких полостей. После этого рассмотрим вольфрамовые ленточные лампы как воспроизводимый источник теплового излучения для термометрии. На этой основе мы ознакомимся с термометрией излучения, реализацией МПТШ-Б8 выше точки золота, измерением термодинамической температуры, методами измерений при неполных данных об излучательной способности поверхности и, наконец, термометрией излучения полупрозрачных сред.  [c.311]

Со времени зарождения квантовой теории излучения черного тела вопрос о том, насколько хорощо уравнения Планка и Стефана — Больцмана описывают плотность энергии внутри реальных, конечных полостей, имеющих полуотражающие стенки, был предметом неоднократных обсуждений. Больщин-ство из них имели место в первые два десятилетия нащего века, однако вопрос закрыт полностью не был, и в последние годы интерес к этой и некоторым другим родственным проблемам возродился. Среди причин возрождения интереса к этому старейшему предмету современной физики можно назвать развитие квантовой оптики, теории частичной когерентности и ее применение к изучению статистических свойств излучения недостаточное понимание процессов теплообмена излучением между близкорасположенными телами при низких температурах и проблему эталонов далекого инфракрасного излучения, для которого длина волны не может считаться малой, а также ряд теоретических проблем, относящихся к статистической механике конечных систем. Хорошим введением к современному обзору в этой области являются работы [2, 3, 5]. Еще в 1911 г. Вейль показал, что требованием о том, чтобы полость являлась прямоугольным параллелепипедом, можно пренебречь при условии, что (У /с)- оо. Он показал также, что в пределе больших объемов или высоких температур число Джинса справедливо для полости любой формы. Позднее на основании результатов работы Вейля были получены асимптотические приближения, где Do(v) являлся просто первым членом ряда, полная сумма которого 0 ) представляла собой среднюю плотность мод. Современные вычисления величины 0 ) [2, 4] с использованием численных методов суммирования первых 10 стоячих волн в полостях простой формы показали, что прежние асим-  [c.315]

Описывается ра шитие проблемы излучения чер-HOI о тела, при решении которой физика впервые вспретилась с квантовыми закономерностями. Излагаются перионачальное решение этой проблемы Планком и элементарная квантовая теория излучения черного тела.  [c.68]

Классическая теория излучения черного тела. В последней четверти XIX в. было завершено построение термодинамики и создана леория электромагнитных явлений. Термодинамика удовлетворительно описывала широкий круг явлений, связанных с веществом, т.е. с корпускулярной формой материи. Теория электромагнетизма удовлетворительно описывала явления, связанные с электромагнитным полем и, в частности, с электромагнитными волнами и светом, электромагнитная природа которого была теоретически открыта Максвеллом. В форме электромагнитных волн электромагнитное поле обрело свое самостоятельное существование, независимое от зарядов и токов, которыми оно порождается. В науку вошло представление о полевой форме материи в виде излучения. Возник вопрос о законах взаимопревращения материи в полевой и корпускулярной форме, или, другими словами, вопрос  [c.68]

Однако на этой картине оставалось несколько темных пятен. Лорд Кельвин в 1900 г. сказал, что на горизонте физики собираются две угрожающие темные тучи. Одной из них являлись трудности, возникшие после знаменитого опыта Майкельсона и Морлея, результаты которого казались несовместимыми с существовавшими тогда представлениями. Второй тучей был крах методов статистической механики в области теории излучения черного тела теорема равномерного распределения энергии — неизбежное следствие статистической механики — действительно приводила к определенному распределению энергии между различными частотами в излучении, находящемся в равновесии. Однако закон этого распределения (закон Рэлея—Джинса) находится в грубом противоречии с опытом и является почти абсурдным, так как из него вытекает бесконечное значение полной плотности энергии, что, очевидно, не имеет никакого физического смысла.  [c.642]

Данная глава, как мы условились в разд. 1.5, посвящена взаимодействию излучения с веществом. Это очень широкая область науки, иногда называемая фотофизикой. Здесь мы ограничимся обсуждением лишь явлений, имеющих непосредственное отношение к веществу, используемому как активная среда лазера. Вводный раздел посвящен теории излучения черного тела, на которую опирается вся современная физика излучения. Затем мы рассмотрим элементарные процессы поглощения, вынужденного излучения, спонтанного излучения и безызлучательной релаксации, На первом этапе это изучение будет проводиться ради простоты для разреженных сред и малой интенсивности излучения. Кроме того, будем вначале считать, что среда состоит только из атомов. Затем будут рассмотрены случаи высокой интенсивности излучения и плотных сред (когда возникают такие явления, как насыщение, суперизлучение, суперлюминесценция и усиленное спонтанное излучение). В последнем разделе мы обобщим некоторые из полученных результатов на более сложный случай молекулярной системы. Некоторые весьма важные, хотя и не столь общие вопросы, касающиеся фотофизики полупроводников, молекул красителей и центров окраски, мы кратко обсудим в гл. 6 непосредственно перед рассмотрением соответствующих лазеров.  [c.25]


Напротив, теорию квантов мы здесь кратко расскажем. Понятие кванта было введено в науку в 1900 г. Максом Планком. Этот ученый изучал тогда теоретически проблему излучения черного тела, и так как термодинамическое равновесие зависит от природы излучателя, он придумал очень простой излучатель, так называемый резонатор Планка, состоящий из квазиупруго связанного электрона, обладающего, таким образом, частотой колебаний, независимой от его энергии. Если применить классические законы электромагнетизма и статистической лшханики к обмену энергией между такими резонаторами и излучением, то это приведет к закону Рэлея, о безусловной неточности которого говорилось выше. Во избежание этого и чтобы прийти к результатам, более согласным с экспериментальными фактами, Планк выдвигает странный постулат Обмен энергией между резонаторами (или веществом) и излучением происходит только конечными порциями, равными частоте, умноженной на /г, причем /г представляет собой новую универсальную константу физики . Каждой частоте соответствует, таким образом, в некотором роде атом энергии —- квант энергии. Рассмотрение полученных данных дало Планку необходимые основания для расчета константы /г, и най-.денное при этом значение (Л = 6,545 10- ) по существу не было изменено, несмотря на многочисленные последующие определения, сделанные самыми различными методами. Это — один из наиболее прекрасных примеров могущества теоретической физики.  [c.643]

Ниже рассматриваются элементы теории оптической пирометрии, основанной на измерении яркости только в видимой части спектра излучения (Х = 0,4 -0,8 мк). В этом диапазоне длин волн при температурах излучателей, обычно встречающихся в печах, (<3 000° К) для определения спектральных характеристик интенсивности пзлучепия может быть использована формула Вина (3-3). Спектральная яркость излучения черного тела при температуре Т на основе этой формулы представляется в следующем виде  [c.42]

Нелегко было примириться с таким отказом от классических представлений, и Плаик, совершив великое открытие, еще в течение нескольких лет пытался понять квантование энергии с позиций классической теории. Безуспешность этих попыток привела его к окончательному выводу, что в рамках классической физики излучение черного тела понять невозможно.  [c.432]

Излучение черного тела. Может показаться, что электромагнитное поле нельзя рассматривать в рамках термодинамики, поскольку оно не является материальным телом. Однако это не так. Замкнутая полость, поддерживаемая при постоянной температуре, всегда заполнена электромагнитным излучением всех возможных длин волн, распространяющихся по всем направлениям. Оно оказывает давление на стенки полости и обладает энергией, которая, как и давление, является функцией температуры и объема. Короче говоря, такая замкнутая полость, заполненная излучением, представляет собой систему, к которой, как впервые установил Больцман (1889), с полным основанием применимы законы термодинамики. К этому времени Йозеф Стефан, учитель Больцмана, уже вывел из экспериментальных данных, что интенсивность излучения из отверстия в замкнутой полости, температура стенок которой всюду одинакова, пропорциональна Г-. Больцман сделал из этого результата правильный вывод, что плотность энергии и (Г) равновесного излучения пропорциональна четвертой степени температуры, и вывел эту зависимость с помощью термодинамики и электродинамики. Максвелл установил, исходя из своей теории электромагнетизма, что давление, оказываемое полем изотропного излучения, равно 7з от плотности Э ергии  [c.93]

И. металлов. Большинство металлов обладает избирательным И. Для определения ур-ий И. металла достаточно знать функциональную зависимость его коэф-та поглощения а уот длины волны и темп-ры, чтобы на основе закона Кирхгофа связать его И. с излучением черного тела. Эта зависимость м. б. установлена в настоящее время лишь экспериментальным путем. Попытка теоретич. установления законов излучения металлов была выполнена Друде и Планком, установившими на основании электромагнитной теории света вависимость между коэфициенто.м поглощения чистых металлов и их электропроводностью. Эта зависимость мо кет быть выражена в следующем виде  [c.498]

По видам излучения И. с. разделяются на два класса 1) И. с. температурного, или калорического, излучения, в к-рых излучение света есть следствие нагревания светящегося тела до высокой темп-ры. В зависимости от рода излучающего тела этот класс И. с. может быть разделен на 3 группы а) И. с. черного излучения, б) И. с. серого излучения, в) И. с. избирательного (или селективного) излучения. Основой теории излучения И. с. этого класса являются законы излучения черного тела (законы Планка, Вина и закон Стефана-Больцмана, см. Излучение) и общим законом для всех трех групп, объединяющим излучения нечерных тел с черным излучением, — закон Кирхгофа. 2) И. с. люминесцирующего излучения, работающие на принципе одного из видов люминесценции, процесса, связанного с излучением света путем возбуждения атомов за счет какого-либо вида энергии, непосредственно воздействующего на вещество. Из различных видов люминесценции в И. с., используемых на практике, наиболее применима электролюминесценция (светящийся разряд в газах) кроме того в природе встречаются явления, связанные с хемилюминесценцией, или выделением лучистой энергии ва счет энергии химич. превращений (свечение медленного окисления — свечение живых организмов). Класс люминесцирующих И. с. является по преимуще ству классом И. с. холодно I о свечения. Повышение темп-ры, имеющее место при работе подобных И. с., служит побочным фактором, не участвующим активно п процессе излучения радиаций. В нек-рых случаях однако наряду с процессом люминесценции зыделение тепла при работе И. с. достигает таких размеров, что излучение может иметь смешанный характер к подобным И. с. например м. б. отнесены лампы с вольтовой дугой (см.), обладающие лю-минесцирующим свечением дуги и темп-рным излучением раскаленных электродов теория люминесцирующего свечения тесно связана с теорией строения атома и теорией спектров. Электролюминесцирующие И. с. могут быть разделены на группы в зависимости от рода газового разряда (дуговой, тлеющий, без-электродный) и в зависимости от характера излучающей среды (пары металлов, перманентный газ).  [c.242]

Наконец, интересны.м применением теории Ми является расчет теплового излучения межзвездными пылинка.ми, которое составляет основную потерю их внутренней энергии и поэтому определяет их температуру. Так как излучаемые волны лежат в далекой инфракрасной области, т. е. и.меют длины волн значительно большие, чем размер частиц, мы должны пользоваться формулами для Спогл., вытекающими из теории Ми (гл. 14). Согласно закону Кирхгофа, излучение в Спогл. раз больше значения, рассчитанного на основе излучения черного тела. Основываясь на этом, ван де Хюлст (1946, 1949) оценил, что температура межзвездных пылинок, будь то металлических или диэлектрических, скорее равна 10—20°, чем традиционному значению з°к.  [c.526]

Закон Планка. Закон Стефана — Больцмана дает величину суммарного излучения абсолютно черного тела. Большое значение в теории теплового излучения имеет спектральное (монохроматическое) распределение энергии излучения абсслютно черного тела. Исходя из  [c.15]

Теория Планка, хотя и противоречила духу классической физики, подтверждалась опытными фактами и смогла решить задачу теплового излучения абсолютно черных тел. Следует отметить, что квантовая теория Планка совершенно не нуждается в понятии эфирной среды . Таким образом, к началу XX в. наряду с электромагнитной теорией возродилась корпускулярная теория света, но, безусловно, отличЕ1ая от корпускулярной теории Ньютона.  [c.8]


Как уже ука.чывало( ь, закон Стефана —Больцмана и закон смещения Вина являются обобщением экспериментов по исследованию зависимости светимости черного тела от длины волны и температуры. В то же время они вполне согласуются с охарактеризованной выше термодинамической теорией равновесного теплового излучения. Для уяснения этого получим законы черного тела из термодинамической формулы Вина (8.6).  [c.410]


Смотреть страницы где упоминается термин Теория излучения черного тела : [c.75]    [c.85]    [c.331]    [c.694]    [c.15]    [c.105]    [c.325]    [c.406]    [c.153]   
Смотреть главы в:

Принципы лазеров  -> Теория излучения черного тела



ПОИСК



Излучение тела

Излучение черного тела Планка теория

Тело черное

Теория излучения

Черного тела излучение

Черный



© 2025 Mash-xxl.info Реклама на сайте