Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные задачи теории пологих оболочек

ЛИНЕЙНЫЕ ЗАДАЧИ ТЕОРИИ ПОЛОГИХ ОБОЛОЧЕК  [c.94]

Итерационный процесс (3.2.6) может быть применен как для решения нелинейных, так и линейных задач теории пологих оболочек. В случае решения линейных задач операторы (3.2.2) имеют вид  [c.94]

Для реализации метода граничных элементов необходима матрица фундаментальных решений исходной системы уравнений. В линейных задачах теории упругости и теории пластин фундаментальные решения имеют простой вид, и поэтому метод здесь получил широкое распространение. Для пологих оболочек матрица фундаментальных решений определяется сложными громоздкими выражениями, а для пологой сферической оболочки выражается через специальные функции. Поэтому исследований по решению задач теории пологих оболочек методом граничных элементов мало. В связи с этим актуальной темой исследования является разработка методов граничных интегральных уравнений для решения линейных и нелинейных задач теории пологих оболочек, основанных на применении фундаментальных решений, которые определяются простыми аналитическими выражениями.  [c.4]


В книге излагается метод граничных элементов для решения линейных и не линейных задач изгиба тонких пластин и пологих оболочек произвольного очер тания. Получены системы сингулярных интегральных уравнений и сделан анали их ядер, пригодный для численной реализации. Предложен метод решения кон тактных задач теории пластин и мембран, включающий поиск неизвестной облас ти контакта.  [c.2]

В книге излагаются результаты исследований по развитию МГЭ в линейных и нелинейных задачах теории пластин и пологих оболочек, полученные на кафедре механики Казанского государственного университета и кафедре сопротивления материалов Ульяновского государственного технического университета [8] -[14].  [c.5]

Позже В. 3. Власов (1944) представил упрощенные уравнения общей линейной теории в форме, аналогичной классической форме уравнений пластинок теории Кармана,— здесь все искомые величины выражены через одну функцию напряжения (плоской задачи) и функцию прогиба срединной поверхности. В этой же работе Власов ввел также общеизвестное теперь понятие пологой оболочки расчет пологой оболочки проводится в предположении, что главные кривизны оболочки постоянны, а срединная поверхность может быть задана в евклидовой метрике (отметим, кстати, что этот вариант стал, после соответствующих обобщений, наиболее популярным также при постановке и решении геометрически нелинейных задач теории оболочек).  [c.229]

Расчет оболочек на основе уравнений теории упругости связан с большими математическими трудностями. Наука еще не располагает практически удобными методами решения более или менее широкого круга прикладных задач. Теория оболочек стремится упростить эти задачи с учетом специфики оболочек. Прежде всего, принимается во внимание тот факт, что толщина оболочки мала по сравнению с двумя другими линейными ее размерами.. Легко представить, что картина деформированного-и напряженного состояний тонкой оболочки существенно зависит также-от свойств срединной поверхности. Во многих технических применениях встречаются оболочки, срединные поверхности которых являются в достаточной степени пологими, и учет этого факта позволяет также вносить значительное упрощение в задачу.  [c.268]


Таким образом, температурная задача теории анизотропных пологих оболочек сводится к решению линейной системы дифференциальных уравнений (13.32) при заданных граничных условиях.  [c.327]

Линейная теория дает возможность исследовать устойчивость оболочки в малом. Полное решение задачи, включающее исследование потери устойчивости оболочки в большом, может быть дано с позиций нелинейной теории. Приведем соотношения, относящиеся к оболочке большого прогиба. Будем ис.ходить из того варианта теории, в котором оболочка считается пологой, по крайней мере, в пределах отдельной вмятины.  [c.133]

В работе получены интегральные уравнения метода компенсирующих нагрузок и результаты решения задач изгиба ортотроп-ных и многосвязных пластин разработаны алгоритмы решения МГЭ задач изгиба пластин сложной формы, дано развитие методики определения предельных значений потенциалов для задач изгиба и плоского напряженного состояния пластины предложен способ вычисления расходящегося интеграла с особенностью типа при г->0, предложены итерационные процессы решения прямым и непрямым МГЭ линейнь(х и нелинейных задач теории пологих оболочек, основанные на применении фундаментальных решений задач изгиба и растяжения пластины постоянной толщи-  [c.4]

Ллойд Гамильтон Доннелл — известный в США и у нас в стране специалист по теории оболочек. Он завершил в 1930 г. в Мичиганском университете докторскую диссертацию, посвященную распространению продольных, волн и удару, под руководством С. П. Тимошенко. В 1933 г. он решил задачу об устойчивости тонкой упругой круговой цилиндрической оболочки крнечной длины при кручении ее концевыми парами. Эта работа связала имя Л. Г. Доннелла с уравнениями линейной теории пологих оболочек. Л. Г. Доннелл записал для нелинейной теории пологих оболочек уравнение совместности деформации, являющееся обобщением известного уравнения Максвелла. Специальная форма дифференциальных уравнений устойчивости круговых цилиндрических оболочек в перемещениях носит название уравнений Доннелла, а уравнения устойчивости пологих оболочек общего вида именуются ныне как уравнения Доннелла — Муштари. Работы Л. Г. Доннелла по оценке влияния несовершенств формы срединной поверхности оболочек на критическую нагрузку в рамках нелинейной теории не прошли незамеченными для специалистов.  [c.5]

В главе строится нелинейная теория жесткогибких оболочек без использования гипотез Кирхгофа. Ее главное отличие от квази-кирхгофовской теории (гл. 3) и теории типа Тимошенко-Рейсснера (гл. 9) заключается в учете вариаций параметров поперечного обжатия Статическая гипотеза заменяется известным приемом подчинения нормальных поперечных напряжений граничным условиям на лицевых поверхностях оболочки. Поперечные сдвиги учитываются по линейной теории, что естественно для тонких жесткогибких оболочек. Показано, что в граничном вариационном уравнении Лагранжа независимыми являются вариации, вообще говоря, шести геометрических величин — компонент вектора перемещения и их производных по тангенциальной нормали к граничному контуру. Как частный случай получены уравнения уточненной теории пологих оболочек. На примере показано, что слагаемые, связанные с вариациями параметров А , могут иметь принципиальное значение для контактных задач со свободной границей.  [c.232]

Позднее, уже в 30-е годы, мы находим у Л. Доннела [75. 76] первую формулировку идеи пологости, выраженную в предположении о возможности пренебречь в уравнениях тангенциального напряженного состояния оболочки перерезывающими усилиями. Последнее, очевидно, эквивалентно предположению 8, определяемому соотношениями (3.26), (3.29). В работах X. М. Муштари [51—54], относящихся к 1938 г., эта идея получила широкое развитие, и с ее использованием были решены многие задачи устойчивости оболочек. В работах Л. Доннела и X. М. Муштари идея пологости использовалась лишь в линейных задачах теории оболочек.  [c.60]


Изучение поведения при га- -оо конечномерных распределений fn p, 9), пол.учаел1ых на основе уравнения Колмогорова — Фоккера — Планка для конечномерных аппроксимаций цо методу Бубнова — Галеркина или Ритца основных линейных краевых задач нелинейной теории пологих оболочек.  [c.350]

В настоящей книге рассматривается самый простой случай, когда материал оболочек подчиняется закону Гука, т. е. имеет место физическая линейность предполагается, что в оболочке перемещения достаточно малы, при этом обеспечивается и геометрическая линейность. Исключение представляет гл. 12, в которой рассматривается геометрически нелинейная теория пологих оболочек. Крше того, предполагается, что внешнее силовое воздействие является статическим. Рассматриваются оболочки с гладкой срединной поверхностью — без ребер, ступеней, острых вершин. Если срединной поверхности оболочки присущи отмеченные выше особенности, то излагаемая в настоящей книге теория справедлива для отдельных частей оболочки, отделенных одна от другой линиями нарушения регулярности для отыскания функций, характеризующих напряженное состояние всей оболочки, приходится решать контактную задачу, для чего выполняется соответствующее согласованйе решений на границах упомянутых частей. Если в оболочке имеются подкрепляющие ее ребра, то и в этом случае теория гладких ободо-чек может быть использована при решении контактной задачи для гладкой оболочки и ребер набора.  [c.10]

Рейтер ]240] представил анализ спирально-намотанных (под углами 0) цилиндрических оболочек при линейном распределении температуры по радиусу и постоянных свойствах материала. При этом он использовал вариант теории слЬистыз , анизотропных пологих оболочек, описанный в работе Донга и др. [83] и распространенный на задачи термоупругости. В отличие от работы Гесса и Берта [107] Рейтер не использовал предположения о квазиоднородности материала по толщине, поэтому полученные им напряжения изменяются при переходе от слоя к слою, а их макси-  [c.237]

Изящная рма уравнений, возможность применения к ним известных методов решения линейных краевых задач - все это привлекло внимание многих ученых, особенно зарубежных [ 3.16-3.25]. Так, уже в 1957 году уравнения Бергера были расширены на ортотропные пластины [ 3.18], а в 1959 году с их помощью были решены динамические задачи [ 3.20]. В дальнейшем результаты Бергера были обобщены на слоистые пластины Крих-гоффа—Лява [3.16] и типа Тимошенко [3.24]. Трехслойные пластины симметричного строения с легким заполнителем и без-моментными несущими слоями изучались в статье [3.19]. Общая теория трехслойных пластин и пологих оболочек с мо-ментными несущими слоями и жестким заполнителем в рамках гипотезы Бергера построена в работах [ 2.15, 3.7, 3.8]. Заинтересовавшихся этой проблемой отсьшаем к обзору авторов [ 3.9], где дана обширная библиография, насчитывающая более 150 публикаций и доведенная до изданий 1980 года.  [c.69]


Смотреть страницы где упоминается термин Линейные задачи теории пологих оболочек : [c.211]    [c.246]    [c.259]   
Смотреть главы в:

Решение задач нелинейного деформирования пластин и пологих оболочек методом граничных элементов  -> Линейные задачи теории пологих оболочек



ПОИСК



Задача об оболочке

Задача теории оболочек

К пологая

Линейная задача

Линейная теория

Линейная теория оболочек

Линейная теория пологих оболочек

Оболочки Теория — См. Теория оболочек

Оболочки пологие

Оболочки пологие оболочек

Пологйе оболочки

Теория оболочек

Теория пологих оболочек



© 2025 Mash-xxl.info Реклама на сайте