Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние технологических параметров на качество поверхности

При частоте нагружения до 2000 Гц образцы испытывали на электродинамическом вибростенде, а свыше — на магнитострик-ционных вибраторах. Кривые усталости при заданной частоте нагружения строили по результатам испытания 15—20 образцов. Для исключения влияния технологических факторов на характеристики усталости при различных частотах нагружения образцы всех серий изготовляли по специальной технологии, обеспечивающей следующие параметры качества поверхности шероховатость поверхности V 10а, глубину наклепа не более 25—30 мкм, технологические макронапряжения практически отсутствовали. В течение всего эксперимента обеспечивали постоянство всех 234  [c.234]


Большое влияние на процесс химического осаждения, скорость осаждения, качество покрытия, равномерность и др. оказывают такие технологические параметры, как кислотность раствора, соотношение компонентов, температура раствора, наличие активирующих или стабилизирующих добавок, а также плотность загрузки, т. е. отношение поверхности покрываемого изделия к объему рабочего раствора ванны. Методом химического восстановления получают покрытия толщиной до 30 мкм и более.  [c.185]

Основными параметрами качества поверхностного слоя являются шероховатость поверхности, глубина и степень деформационного упрочнения и технологические остаточные напряжения (макро-, микронапряжения и искажения кристаллической решетки). Эти параметры приняты авторами для оценки влияния технологических факторов обработки на прочностные свойства детали.  [c.4]

В основу новой композиции было положено стремление предпослать материалам по отдельным сопряжениям общие сведения, относящиеся к задачам взаимозаменяемости, к основным определениям, к неточности обработки, к основам технических измерений и т. д. Комплексное изложение различных видов отклонений — основного размера, формы и поверхности (чистота и волнистость) от заданных параметров — также приводится в начале курса (гл. II), причем в курсе Допуски и технические измерения основное внимание должно уделяться определениям и нормативам этих видов отклонений, их влиянию на качество сопряжений и соответствующим методам измерений, а в последующих технологических дисциплинах в основу должны быть положены анализ и характеристика процессов обработки, необходимых для ограничения этих отклонений предписанными значениями. Расчеты размерных цепей были попрежнему оставлены в конце курса, так как педагогическая практика подтвердила, что после ознакомления студентов с вопросами, относящимися к отдельным сопряжениям, общие основы расчета размерных цепей усваиваются лучше и полнее.  [c.3]

Несомненно, что качество поверхности, обусловленное технологией обработки, оказывает существенное влияние на условия последующей эксплуатации. Его значение особенно велико для начала работы трущихся сопряжений (периода приработки) и дальнейшего сохранения в процессе эксплуатации заданных посадок. Однако необходимо признать, что попытки использования данных о технологическом рельефе для изучения общих закономерностей трения, смазки и износа не дали удовлетворительных результатов. Нельзя считать нормальным тот факт, что макро-и микроскопические параметры оценки технологического рельефа являются до настоящего времени наиболее важными и чуть ли не единственными исходными  [c.26]


Шероховатость поверхности является следствием как методов технологической обработки и режимов резания (глубины резания, подачи, скорости резания), так и системы СПИД (станок — приспособление — инструмент — деталь). Шероховатость поверхности наряду с другими факторами, определяющими качество поверхности (отклонениями формы, волнистостью и физико-механическими свойствами поверхностного слоя) оказывает большое влияние на эксплуатационные свойства деталей и, как следствие этого, на функциональную работоспособность узлов, агрегатов и машины. Эффективное и единообразное нормирование и контроль шероховатости поверхности обеспечиваются стандартизацией терминов и определений, номенклатурой параметров и рядов их значений для количественной оценки (СТ СЭВ 638-77, СТ СЭВ 1156-78).  [c.619]

Иногда [И, 15, 24] оценивают тот или иной способ подготовки деталей к холодной сварке, пользуясь таким показателем, как степень деформации при возникновении сцепления. Такую оценку нельзя признать правильной. Во-первых, методы определения начала сцепления, в том числе и метод сдавливания образцов между симметрично наклонными пуансонами [И], отличаются крайней неточностью. Во-вторых, целью холодной сварки является вовсе не начало возникновения сцепления, а получение прочного и надежного неразъемного соединения деталей. Поэтому при наших исследованиях в качестве критерия для оценки влияния того или иного способа подготовки поверхности на качество холодной сварки была принята прочность соединения образцов, сваренных при одних и тех же параметрах технологического процесса, но при различных способах подготовки соприкасающихся поверхностей. Прочность соединения характеризовалась величиной разрушающего усилия при испытании на растяжение (срез> сваренных внахлестку образцов, а также результатами испытания на растяжение и на изгиб образцов, сваренных в стык.  [c.13]

Литье по выплавляемым моделям — Понятие 197 — Последовательность технологических операций 198, 199 — Расчет параметров для стальных отливок 204, 205 Литье под всесторонним газовым давлением — Влияние повышенного газового давления на форму 330 — Время затвердевания отливок 330 слитков 331 — Заполняемость форм 329—331 — Особенности литья сплавов алюминиевых 331, 332 магниевых 332 медных 332, 333 никелевых 334 стали 334, 335 — Природа используемого газа 330 — Способы 328, 329 — Сущность процесса 328 Литье под давлением — Гидродинамические условия удаления газов из полости формы 260 — Движение струи 253, 254 критические скорости ламинарного движения, максимальная скорость заливки 254 расчетное значение устойчивой длины струи 253 — Заполнение формы 254 — 256 — Номенклатура отливок, шероховатость их поверхности 251 — Область применения 249 — Параметры, влияющие на качество отливок 248 — Скорости впуска расплава и прессования 272, 273 — Скорости и давления при дисперсном и турбулентном потоке 256 при ламинарном потоке 257 — Удар впускного потока в стенку формы 254, 255 — Критическая скорость впуска 254, 255 Литье под низким давлением 287, 288 — Организация производства 316, 320 — Подготовка жидкого металла 295 — 297 — Преимущества 288 — Разновидности процесса 320 — Расчет теплосиловых параметров формирования отливки 297—299 — Технико-экономические показатели 316 Литье полунепрерывное вертикальное труб из серого чугуна 557 — Литейные свойства чугуна 557 — Недостатки 557 — Основные и технологические параметры 560 — Предельные усилия срыва и извлечения труб из кристаллизатора 558, 559 — Преимущества 557 — Производительность процесса 560 — Режимы вытягивания заготовки 558, 559 движения кристаллизатора 557 — Тепловые параметры 558 — Технологические основы 557, 558 Литье при магнитогидродинамическом воздействии — Физические основы 423 — 426 Литье с использованием псевдоожиженных  [c.731]

В качестве примеров использования параметра ад можно сослаться на выполненную с его помощью оценку зависимости долговечности турбинных лопаток газотурбинного двигателя, позволившую предложить методику расчетно-опытного обоснования требований к неровностям поверхности этих деталей, а также на определение процедуры ускоренных испытаний влияния различных технологических процессов и режимов обработки на повышение выносливости деталей технологическими средствами.  [c.194]


Шероховатость поверхности. Влияние на усталость шероховатости поверхности, по сравнению с другими параметрами качества поверхностного слоя деталей, наиболее изучено. Однако в большинстве работ экспериментальных и теоретических устанавливается только качественный характер зависимости усталости от шероховатости поверхности и без учета наклепа и технологических макронапряжений, имеющихся в поверхностном слое после его обработки. Усталостные испытания проводили при комнатной температуре и низкочастотном нагружении. Влияние шероховатости поверхности на сопротивление усталости обычно оценивается различными коэффициентами концентрации напряжений, обусловливаемых геометрическими параметрами микронеровностей поверхности. Имеются также эмпирические формулы, устанавливающие зависимость сопротивления усталости от того или иного критерия шероховатости поверхности. Так, например, И. А. Одинг оценивает изменение сопротивления усталости в зависимости от шероховатости поверхности с помощью эмпирического коэффициента, имеющего следующий вид [56]  [c.165]

Основными параметрами качества поверхностного слоя деталей после механической обработки металлическим или абразивным инструментом является шероховатость поверхности, глубина и степень наклепа и технологические макронапряжения. Для определения степени влияния каждого из них в отдельности на характеристики усталости, в данной работе использован метод изотермических нагревов в вакууме образцов после заданных режимов механической обработки. Вакуум необходим для предохранения от окисления поверхностного слоя образцов при нагревах. Для этой цели образцы после механической обработки на заданных режимах разделены на три группы. Образцы первой группы испытывали на усталость непосредственно после механической обработки, образцы второй и третьей групп до испытания на усталость подвергали изотермическим нагревам в вакууме для снятия технологических макронапряжений (вторая группа) и для снятия поверхностного наклепа (третья группа). Относительную значимость каждого параметра качества поверхностного слоя в отдельности оценивали путем сравнения характеристик усталости образцов после термообработок для снятия остаточных напряжений, поверхностного наклепа и образцов, не подвергавшихся термической обработке.  [c.173]

На количество образующихся продуктов коррозии помимо свойств и качества самого конструкционного материала оказывают влияние также величины поверхностей, омываемых паром и водой, условия процесса (в основном температура), агрессивность рабочей среды. Первые два фактора определяются условиями технологического процесса получения пара заданных параметров в котле и выработкой определенного количества тепловой и электрической энергии в турбогенераторе.  [c.113]

Учитывая рассмотренные общие принципы установки заготовок, к установочным элементам можно предъявить следующие требования. Число и расположение элементов должно обеспечить ориентацию заготовки согласно принятой в технологическом процессе схеме базирования и достаточную ее устойчивость в приспособлении. При использовании необходимых баз с параметром шероховатости поверхности > 20 мкм установочные элементы следует выполнять с ограниченной опорной поверхностью для уменьшения влияния неровностей этих баз на устойчивость заготовки. Установочные элементы не долй<ны портить базовые поверхности, особенно те, которые не подвергаются повторной обработке. Установочные элементы должны быть жесткими. Их жесткость повышают, улучшая качество сопряжения элементов с корпусом приспособления, применяя шабрение или шлифование поверхностей стыков, а также сильно прижимая элементы к корпусу приспособления крепежными деталями.  [c.15]

Расчёт режимов резания и выбор рационального являются ключевыми звеньями при разработке технологических процессов формирования заданных конфигураций деталей от этого во многом зависит качество ( а соответственно и работоспособность) изделия, трудовые и денежные затраты на его изготовление. На режимы резания оказывают влияние многие факторы, которые следует учитывать при расчётах. К ним, например, относятся микро и макро-% структура материала заготовки, его физико-механические свойства состояние обрабатываемой поверхности материал и геометрические параметры режущего инструмента механические характеристики оборудования и т.д.  [c.2]

Сварка пористых материалов со сталью. Часто из-за конструктивных особенностей изделия в процесс изготовления включают сварку. Особенно успешно диффузионная сварка применяется при соединении пористого материала со стальным корпусом изделия. Большое влияние на прочность соединения оказывает качество подготовки соединяемых поверхностей и прежде всего параметры шероховатости и отклонение от параллельности торцов. Отклонение от параллельности торцов должно быть не более 0,2 мм. Прочность соединения пористый материал — сталь находится в большой зависимости от технологических режимов сварки. Рекомендуемые режимы диффузионной сварки пористых материалов со сталью приведены в табл. 5.  [c.209]

Основными параметрами качества поверхностного слоя, определяющими характер влияния технологических факторов на усталость лопаток, являются глубина и степень наклепа, так как шероховатость поверхности обычно соответствует 9-му классу независимо от метода изготовления их. Если упрочнение образцов виброгалтовкой и гидродробеструйной обработкой (режимы 94—95) снижает усталостную прочность при 450° С, то при комнатной температуре в лопатках 3-й ступени ротора компрессора изделия Б этот же наклеп по сравнению с ЭХО повышает сопротивление усталости на 30—45% (база испытания 20 млн. циклов).  [c.212]


Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

Известно также, что параметры шероховатости поверхности оказывают существенное влияние на сопротивление усталости. В общем случае предел усталости повышается с улучшением качества поверхностного слоя. Кроме того, на них влияет направление следов обработки при их совпадении с действием главного напряжения предел усталости выше. Финишная обработка поверхности, которая в основном определяет конфигурацию микроскопических рисок и механические свойства поверхностного слоя, существенно влияет н а предел выносливости даже при одинаковом классе шероховатости. Например, в работе [127] приведены результаты испытаний на выносливость образцов из сталей Р18, 9ХМФИ9Х, обработанных алмазным и обычным шлифованием. Сопротивляемость усталостному разрушению при шлифовании кругами из синтетических алмазов повышается на 20—45% при контактных нагрузках и до 30% при изгибе. Это связано с характеристикой рельефа поверхности, когда число царапин на единицу поверхности и их глубина значительно меньше при алмазном шлифовании, чем при абразивном, а рельеф становится более гладким (см. также рис. 150). Проведенные исследования позволили повысить стойкость валков для станов холодной прокатки вследствие правильного выбора технологического процесса.  [c.439]

Влияние шероховатости поверхности на усталость. Зависимости характеристик усталости жаропрочных материалов от шероховатости поверхности можно определить при исключении влияния других параметров качества поверхностного слоя — наклепа и остаточных макронанряжений. В процессе механической обработки наряду с образованием микронеровностей на поверхности происходит деформация поверхностного слоя и наведение в нем технологических остаточных макронапряжений.  [c.181]

К функциональным параметрам относят, в часгносга, параметры, характеризующие качество поверхностного слоя деталей [4, 6]. В соответствии с современными представлениями о влиянии параметров качества поверхностного слоя деталей на их эксплуатационные свойства необходимо технологически обеспечивать следующую совокупность параметров М, W, R, Д а, S и т, ще Л/, И и J - соответственно показатели мазфогеометрии, волнистости и шероховатости обработанной поверхности Н, а, S к X - соответственно показатели, характеризующие упрочнение, напряженность, физическое и химико-физическое состояние поверхностного слоя.  [c.334]

Под термином технологические свойства СОЖ следует понимать шх влияние на главные параметры функционирования системы резания, существенно важные для оценки хода производства или используемые при подготовке производства (см. рис. 2). В соответствии с этим влияние СОЖ на износ л стойкость, на точность и шероховатость обработанных поверхностей является показателем их технологических свойств. В то же время влияние СОЖ, например, на температуру в зоне резания, составляющие силы резания не следует рассматривать в качестве показателя технологических свойств. Однако знание дополнительных параметров функционирования системы резания обеспечивает более полную оценку влияния СОЖ на процесс резания и уменьшает вероятность ошибочного заключения на стадиях предварительных испытаний и экспресс-испытаний технологических свойоств СОЖ. Из этого можно сделать несколько важных для дальнейшего обсуждения выводов.  [c.86]

Производительность шлифования, качество поверхностного слоя, стойкость круга, силы резания и температура в- зоне резания зависят от зернистости круга, вида связки, ширины круга, концентрации (для алмазных и эльборовых кругов), свойств обрабатываемого материа а и режимов резания [12, 29, 39, 68, 70, 110 и др.]. Следовательно, для полного исследования процесса шлифования необходимо учитывать влияние всех этих факторов на выходные параметры технологического процесса — точность и качество поверхности. В то же время анализ требований к точности и качеству изделий из ВКПМ, обработанных шлифованием, показывает, что требуемая точность (11-й квалитет) невелика для шлифования, поэтому в качестве основного критерия оценки полезности процесса принимают качество обработанной поверхности.  [c.141]

На качество фосфатных пленок оказывают влияние общая (Ко) и свободная (Кс) кислотности фосфатирующегр раствора, состав его, подготовка поверхности металла и технологические параметры (температура фосфатиру-ющего раствора, время обработки).  [c.47]

Выводы и технологические рекомендации. Усталостная прочность жаропрочных сталей и сплавов при рабочих температурах и высокочастотном нагружении существенно зависит от следующих основных параметров качества поверхностного слоя шероховатости поверхности, глубины и степени наклепа. Технологические остаточные макронапряжения независимо от их величины и знака не оказывают заметного влияния на характеристики усталости. В условиях циклического нагружения и высоких температур они быстро релаксируются.  [c.230]


Смотреть страницы где упоминается термин Влияние технологических параметров на качество поверхности : [c.197]    [c.110]    [c.89]    [c.51]    [c.224]   
Смотреть главы в:

Технология машиностроения  -> Влияние технологических параметров на качество поверхности



ПОИСК



678 — Параметры технологические

Влияние Параметры

Влияние качества поверхности

Влияние на технологическая

Качество Параметры

Параметры качества поверхности

Параметры поверхности

Поверхности — Качество

Поверхность влияния



© 2025 Mash-xxl.info Реклама на сайте