Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия металлов е кислородной деполяризацией

Смешанный диффузионно-кинетический контроль протекания катодного процесса, т. е. соизмеримое влияние на скорость катодного процесса перенапряжения ионизации и замедленности диффузии кислорода, по-видимому, наиболее распространенный случай коррозии металлов с кислородной деполяризацией, и довольно часто замедленность обеих стадий катодного процесса определяет скорость коррозии металлов. Этот случай коррозии металлов,  [c.244]


Коррозия металлов с кислородной деполяризацией, т. е. когда катодная деполяризация осуществляется растворенным в электролите кислородом, является самым распространенным коррозионным процессом. Согласно уравнению (85) самопроизвольное протекание процесса коррозии металла с кислородной деполяризацией возможно, если  [c.94]

Коррозия металлов с кислородной деполяризацией и ее  [c.4]

КОРРОЗИЯ МЕТАЛЛОВ С КИСЛОРОДНОЙ ДЕПОЛЯРИЗАЦИЕЙ И ЕЕ ТЕРМОДИНАМИЧЕСКАЯ ВОЗМОЖНОСТЬ  [c.134]

Диффузионно-кинетический контроль протекания катодного процесса, т. е. соизмеримое влияние на скорость катодного процесса перенапряжения ионизации и замедленности диффузии кислорода, — наиболее распространенный случай коррозии металлов с кислородной деполяризацией и довольно часто замедленность обеих стадий катодного процесса определяет скорость коррозии металлов. Этот случай коррозии металлов, так же как и предыдущий, чувствителен к изменениям условий диффузии кислорода. Вместе с тем скорость процесса зависит от природы и содержания катодных примесей, но в меньшей степени, чем при чисто кинетическом контроле процесса.  [c.149]

В условиях работы теплоэнергетического оборудования контролирующей ступенью коррозии, протекающей с кислородной деполяризацией, является диффузия кислорода к катодным участкам. Это означает, что при кислородной коррозии металла скорость ее определяется преимущественно концентрацией кислорода (рис. 2-1),  [c.27]

Атмосферной называется коррозия металлов во влаж- ном воздухе при температуре окружающей среды. Атмосферная коррозия является следствием протекания электрохимических процессов в тонких слоях влаги, конденсирующейся на поверхности металла. Большей частью атмосферная коррозия протекает с кислородной деполяризацией и, в основном, подчиняется закономерностям, характерным для такого типа коррозионных процессов. Особенности атмосферной коррозии связаны с условиями ее возникновения и отдельными фактора.ми, влияющими на ее скорость.  [c.30]

Если в особо чистый металл вводить катодные примеси или структурные составляющие, то в условиях контроля катодного процесса диффузией кислорода это приведет, согласно уравнению (499), к увеличению путей диффузии кислорода и повышению скорости коррозии металла. Однако начиная с некоторой сравнительно низкой степени загрязненности катодными примесями, которая свойственна техническим металлам, дальнейшее увеличение катодных примесей или структурных составляюш,их мало влияет на скорость процесса. Н. Д. Томашов доказал, что при достаточно тонкой дисперсности катодов на поверхности металла или сплава, корродирующего с кислородной деполяризацией при ограниченной скорости диффузии кислорода, даже при сравнительно небольшой общей поверхности микрокатодов, практически используется весь возможный объем электролита для диффузии кислорода к данной корродирующей поверхности (рис. 168), т. е. микрокатоды работают так, как будто Ме-  [c.244]


Из п. 3 табл. 41 следует большая эффективность электрохимической катодной защиты при диффузионном контроле катодного процесса (например, кислородной деполяризации в неподвижных нейтральных электролитах) и малая ее эффективность при коррозии металлов в кислотах (малые значения Р ) и коррозии их в пассивном состоянии (большие значения Р ).  [c.295]

Коррозия большинства металлов в нейтральных растворах (в воде и водных растворах солей) протекает с кислородной деполяризацией и ее скорость сильно зависит от скорости протекания катодной реакции ионизации кислорода и подвода кислорода к корродирующей поверхности металла, в то время как влияние pH растворов в нейтральной области (pH 4- -10) незначительно или даже отсутствует (например, для железа, цинка, свинца и меди 13 интервале pH = 4- -10 7-f-lO 6-4--8 соответственно).  [c.343]

Индивидуальные адсорбционные ингибиторы не эффективны в условиях коррозии с кислородной и смешанной деполяризацией. Более того, из-за экранирования поверхности процесс коррозии с кислородной деполяризацией может оказаться сосредоточенным (благодаря эффекту бокового подвода) на относительно небольшой ее доле. Общая коррозия в присутствии таких ингибиторов в условиях преобладания кислородной деполяризации способна трансформироваться в локальную, более опасную. Применение этих ингибиторов, как и любых мер защиты металлов от коррозии, требует ясного представления о природе коррозионного процесса и об условиях его протекания, а также о конкретных требованиях к конечным результатам защиты.  [c.37]

Атмосферная коррозия обусловлена протеканием двух сопряженных электрохимических реакций — анодной и катодной, заключающихся в первом случае в ионизации металла, во втором случае — в ассимиляции освобождающихся в результате анодной реакции электронов окислительными компонентами коррозионно-агрессивной среды. Поэтому скорость ее развития зависит от интенсивности катодного и анодного процессов. Атмосферная коррозия протекает главным образом с кислородной деполяризацией и зависит от транспорта кислорода воздуха — самого распространенного катодного деполяризатора  [c.5]

Одним из путей обеспечения удаления с поверхности деталей влаги и инородных частиц является подбор текстуры и смачиваемости поверхностей. При грубой текстуре поверхности детали происходит ее интенсивное коррозионное разрушение. Это объясняется тем, что к участкам металла в углублениях поступает кислорода меньше, чем к участкам на гребнях. В связи с этим при взаимодействии нейтральной или щелочной среды, когда процесс коррозии металла идет с кислородной деполяризацией, на участках с большой концентрацией кислорода значение положительного потенциала выше, чем на участках с меньшей концентрацией кислорода. Вследствие дифференциальной аэрации возникает коррозионный микроэлемент. Кроме того, на детали собираются и удерживаются влага, пыль, грязь, остатки перерабатываемых и транспортируемых продуктов, которые, в свою очередь, могут способствовать размножению микроорганизмов и протеканию процессов биокоррозии. При грубой текстуре затрудняется нанесение качественных гальванических покрытий.  [c.33]

Влияние скорости относительного движения коррозионной среды. Скорость коррозии не зависит от того, что находится в движении — металл или коррозионная среда. Скорость относительного движения существенно влияет на коррозионные процессы, идущие с кислородной деполяризацией, так как благодаря движению концентрация кислорода в приэлектродном слое увеличивается. Продукты коррозии, пассивирующие поверхность металла, при движении отслаиваются, что приводит к повышению скорости коррозии. При больших скоростях относительного движения повышение концентрации кислорода может привести к пассивации поверхности металла. При очень высокой скорости наблюдается коррозионная эрозия, т. е. комбинированное электрохимическое и эрозионное разрушение металла.  [c.26]


Равномерная коррозия. В большинстве случаев, когда коррозии подвержена вся поверхность металла или отдельные ее части, защитные пленки или отложения не образуются. Это наблюдается в слабокислых растворах солей, кислотах, комплексообразующих растворах полифосфатов и в случаях, когда коррозионная среда беспрепятственно контактирует с поверхностью корродирующего металла. Скорость коррозии в этих случаях определяется диффузией и зависит от концентрации ионов водорода при коррозии с водородной деполяризацией или от концентрации кислорода при коррозии с кислородной деполяризацией.  [c.92]

Существует несколько способов повышения скорости коррозии. Применительно к атмосферной коррозии или случаям периодического смачивания электролитом металла наиболее простым является увеличение продолжительности контакта металлической поверхности с электролитом. Поскольку в атмосферных условиях продолжительность воздействия электролита на металл ограниченна, при ее увеличении сокращается продолжительность испытания. В атмосферных условиях процесс контролируется скоростью кислородной деполяризации, и испытания необходимо проводить таким образом, чтобы металл подвергался возможно более длительному воздействию тонкого слоя электролита, но при этом толщину пленки не следует уменьшать бесконечно, так как в очень тонких слоях наряду с облегчением протекания катодной реакции может замедлиться анодная реакция.  [c.18]

Катодный контроль имеет место в случае, когда скорость коррозионного процесса определяется скоростью катодной реакции, т. е. протекание катодной реакции встречает большее сопротивление, чем протекание анодной. Чаще всего катодной реакцией при коррозии металлов в естественных условиях является восстановление кислорода (кислородная деполяризация)  [c.47]

В воздушной среде процессы коррозии протекают прежде всего с кислородной деполяризацией, так как тонкий слой электролита совершенно не препятствует диффузии кислорода воздуха к поверхности металла. С другой стороны, наличие кислорода способствует переходу металла в пассивное состояние, т. е. торможению анодного процесса. Тормозить анодный процесс может также отсутствие стехиометрического количества воды, необходимого для гидратации ионов. Вдобавок, образуюш,иеся продукты коррозии могут обладать защитными свойствами и соответственно способствовать ограничению процесса коррозии.  [c.80]

В морской воде коррозия металлов носит электрохимический, характер. Морская вода является типичным электролитом, ее хорошая электропроводность способствует коррозии. Она имеет слабощелочную реакцию (pH = 8-ь8,3). В этих условиях коррозия железа, стали и чугуна протекает исключительно с кислородной деполяризацией, т. е. скорость коррозии определяется подводом кислорода к поверхности металла.  [c.96]

Если известна основная ступень коррозии, которая тормозится каким-то методом защиты, то можно заранее указать, в каких условиях применение этого метода наиболее эффективно. Например, уменьшить скорость коррозии металла снижением в нем эффективных катодных примесей можно только тогда, когда основной контролирующей стадией коррозии является перенапряжение катодного деполяризующего процесса (например, при активном растворении металла в кислотах). В противоположность этому при коррозии с кислородной деполяризацией, когда контролирующим фактором является диффузия кислорода, повышение чистоты металла не даст положительного эффекта. При коррозии же с анодным контролем, т. е. когда возможно установление пассивного состояния, наличие катодных примесей, наоборот, будет способствовать снижению скорости коррозии.  [c.48]

При коррозии железа в большинстве природных условий, например, в атмосфере или нейтральных электролитах, т. е. в условиях коррозии с кислородной деполяризацией незначительные примеси в железе или изменения структуры металла существенно не влияют на скорость коррозии. Некоторым исключением является добавка в сталь меди. Установлено, что так называемые медистые стали, содержащие 0,3—0,5 % меди, имеют несколько повышенную -стойкость в атмосферных условиях. Это объясняется, с одной стороны, действием накапливающихся на поверхности стали катодных включений меди, смещающих потенциал  [c.140]

При коррозии сталей в почвах, грунтах и морской воде, т. е. при коррозии с кислородной деполяризацией, влияние состава металла практически столь незначительно, что может не приниматься во внимание. Иными словами, величина перенапряжения кислорода на катодных участках поверхности и общая площадь, занятая ими, не оказывают влияния на скорость коррозии. Это объясняется прежде всего малой растворимостью в воде и замедленным поступлением молекул кислорода к поверхности металла. Условия диффузии и концентрация кислорода в растворе— вот те основные факторы, которые определяют скорость коррозии с кислородной деполяризацией. Этим обстоятельством объясняется различная скорость коррозии одного и того же металла в разных грунтах и повышенная скорость коррозии при движении воды относительно металла.  [c.28]

Коррозия металлов, как уже отмечалось, — это сопряженный процесс протекания катодных и анодных реакций. Анодной реакцией, естественно, является процесс перехода ионов данного металла в раствор, обусловливающий потерю массы катодной же реакцией может быть та возможная в данных условиях, потенциал которой более положителен по отношению к аноду — основному металлу. В зависимости от химического состава раствора электролита поддерживать анодное растворение металла может реакция разряда ионов водорода (водородная деполяризация), реакция электровосстановления молекул кислорода (кислородная деполяризация), реакция разряда ионов металла (например, ионов меди на железе), окислительно-восстановительные реакции (РеЗ+-> Fe +-f е и др.). В кислых средах коррозия протекает вследствие разряда ионов водорода с образованием газообразного водорода на катодных участках  [c.57]


При коррозии сталей в почвах, грунтах и морской воде, т. е. при коррозии с кислородной деполяризацией, влияние состава металла практически столь незначительно, что его можно не принимать во внимание. Иными словами, величина перенапряжения кислорода на катодных участках поверхности и общая площадь, занятая ими, не оказывают влияния на скорость коррозии. Это объясняется прежде всего малой растворимостью кислорода в воде и замедленным поступлением молекул  [c.61]

На защитные свойства осадка СаСОз и продуктов коррозии железа, осаждающихся на металлической поверхности в результате вторичных процессов, а также на структуру этих осадков и их физико-химические свойства (сплошность, плотность,, однородность, прочность адгезии) влияют pH и химический состав приэлектродного слоя, содержание растворенного кислорода и ионов-активаторов (С1 , 504 ). В результате электрохимической коррозии металла с кислородной деполяризацией вблизи участков поверхности, где протекает катодная реакция восстановления кислорода, накапливаются гидроксид-ионы. При малой буферной емкости речной воды это может привести к значительному увеличению pH приэлектродного слоя (по сравнению с pH в объеме воды). Индекс насыщения возле поверхности металла может оказаться значительно выше его значения, вычисленного на основании данных химического анализа воды,, т. е. стабильная или даже агрессивная вода окажется способной к образованию карбонатных осадков [26].  [c.46]

Коррозия металлов в нейтральных, слабокислых средах и во влажном воздухе протекает с кислородной деполяризацией. Это наиболее распространенный вид коррозионных разрушений. Он осуществляется с участием кислорода воздуха, содержащегося в электролите или адсорбированного поверхностью металла. Протекание коррозии металла с кислородной деполяризацией возможно, если ме < Ео,- Так как потенциал кислородного электрода всегда положителен (в зависимости от pH среды изменяется от +0,40 до +1,23 В [1, с. 231 ]), то этому виду коррозии подвержена большая часть металлов. Высокие значения изобарноизотермического потенциала AG и соответственно э. д. с. имеют, в частности, такие металлы, как Mg, Zn, Fe не случайно они быстро корродируют во влажной атмосфере при наличии кислорода воздуха. Разрушение железа протекает по следующей суммарной реакции  [c.154]

Наряду с кислородной деполяризацией часто может параллельно протекать процесс водородной деполяризации. Такие случаи встречаются на практике при коррозии железа в разбавленных растворах серной кислоты или алюминия в нейтральных растворах. Если при растворении металла с кислородной деполяризацией первичные продукты коррозии на аноде и катоде (Ме+-лН20 и ОН ) диффундируют от поверхности металла навстречу друг другу, возможно взаимодействие между ними и образование вторичных продуктов коррозии, т. е. твердой фазы. Например, при коррозии железа с анода перейдут в раствор гидратированные ионы железа Ре + пНгО, а с катода — ионы ОН . Они будут диффундировать навстречу друг другу и при встрече образуют гидрат закиси железа, являющийся вторичным продуктом коррозии. В дальнейшем, при доступе кислорода, гидрат закиси железа может перейти в гидрат окиси, согласно уравнению  [c.36]

Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% Si, Мп и Fe, ост. AI), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения uAla в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях uAla и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений uAla, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла.  [c.420]

Из всего многообразия факторов, влияющих на электрохимический процесс коррозии, весьма важным является водородный показатель раствора электролита, т. е. характеристика активности в ием водородных ионов. Усиление или ослабление коррозионного процесса часто является функцией от активности ионов водорода в растворе. Уменьшение pH раствора, т. е. увеличение активности ионов Н+-приводит обычно к возрастанию скорости коррозии, так как потенциалы водородного и кислородного электродов делаются более иоложительиымл к катодные процессы водородной и кислородной деполяризации облегчаются. Примером такого влияния pH на скорость коррозии может СЛУЖИТЬ сильное ускорение растворения многих металлов (же-  [c.69]

При достаточной для коррозии влажности определяющее влияние на скорость ее оказьшает загрязненность воздуха примесями. Наиболее существенные примеси в промышленной атмосфере—это двуокись серы, хлориды, соли аммония. В атмосфере могут содержаться также углекислый газ, сероводород, окислы азота, муравьиная и уксусная кислоты, аммиак. Однако их влияние на скорость атмосферной коррозии в боль-щинстве случаев незначительно. Даже при значительном содержании углекислого газа в атмосфере он снижает pH электролита лишь до 5-5,5, и в условиях избытка кислорода при таком значении pH коррозия с кислородной деполяризацией не переходит в процесс с водородной деполяризацией. Сероводород, оксиды азота, хлор, соли аммония и другие соединения в значительных количествах могут присутствовать только в атмосфере вблизи от химических предприятий, в этом случае их наличие в воздухе оказывает влияние на механизм и скорость коррозионного разрушения металла. Особенно существенно влияние сероводорода на атмосферную коррозию промыслового оборудования месторождений сернистых нефтей и газов.  [c.6]

Если с течением времени скорость коррозии стали, согласно данным Г. К- Берукштис и Г. Б. Кларка, замедляется, то в приморском районе Севера указанной закономерности не наблюдается. Своеобразное поведение легированных сталей в северной приморской атмосфере объясняется отсутствием необходимых условий для образования компактного защитного слоя из продуктов коррозии [59]. Вследствие влияния морских солей на поверхности металла образуется тонкая минерализованная влажная пленка, содержащая все соли морской воды. Вследствие облегчения диффузии кислорода к корродирующей поверхности металла при атмосферной коррозии преобладает кислородная деполяризация. Процесс ее в приморской зоне несколько отличается от деполяризации в обычных условиях, что вызвано наличием в составе воздуха таких деполяризаторов, как озон, йод, бром, а также депассиватора — хлора.  [c.39]


При коррозии металлов частицами, ассимилирующими избыточные электроны, возникающие за счет анодного процесса, обычно являются катион водорода и молекулы кислорода, растворенные в электролите. В некоторых условиях деполяризаторами, т. е. частицами, ассимилирующими электроны и, следовательно, восстанавливающимися на катоде, являются диоксид серы, атомарный хлор, любые металлические катионы разных степеней окисления (ионы железа, хрома), а также кислородсодержащие неорганические анионы (СгаО -, МПО4-, АзОз -). В зависимости от того, какая из частиц участвует в процессе ассимиляции электронов при катодной реакции, различают процессы коррозии, идущие с кислородной, водородной или смешанной деполяризацией. К первым  [c.8]

Скорость электродных реакций с повышением температуры увеличится, но температура одновременно влияет на ряд других факторов (растворимость кислорода, свойства защитных пленок на металл и т. д.). Необходимо иметь в виду, что температура увеличивает скорость кислородной деполяризации лишь до определенного предела ( 60°С). Дальнейшее повышение температуры резко уменьшает растворимость кислорода, что приводит к обратным рзультатам, т. е. к уменьшению скорости коррозии.  [c.50]

Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно зафязненный присутствующими в воздухе химическими соединениями, является электролитом. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов отличается от коррозии металлов, полностью погруженных в электролит. Во-первых, в воздушной среде процессы коррозии протекают всегда с кислородной деполяризацией, т.к. тонкий слой электролита совершенно не препятствует диффузии кислорода воздуха к поверхности металла. Во-вторых, наличие кис.торода способствует переходу металла в пассивное состояние, т.е. торможению анодного процесса.  [c.63]

При коррозии металлов частицами, ассимилирующими избыточные электроны, возникающие за счет анодного процесса, обычно являются ион водорода и молекулы кислорода, растворенные в электролите. В некоторых условиях деполяризаторами, т. е. частицами, ассимилирующими электроны и, стало быть, восстанавливающимися на катоде, могут служить сернистый газ, атомарный хлор, любые металлические катионы, существующие в нескольких степенях окисления (ионы железа, хрома), а также кислородсодержащие неорганические анионы (СггО , Мп04, АззОз). В зависимости от того, какая из частиц участвует в процессе ассимиляции электронов при катодной реакции, различают процессы коррозии, идущие с кислородной, водородной и смешанной деполяризацией. К первым относятся процессы, в которых катодные реакции протекают по схемам (2—6) табл. 3, ко вторым — по схеме (1). Процессы коррозии со смешанной деполяризацией протекают за счет катодных реакций, идущих по схемам (1) и (2—6) или (1) и (7—9). Могут встретиться процессы со смешанной деполяризацией, в которых  [c.12]

Последнее уравнение представляет собой уравнение гиперболы (рис. 12, а). Из него следует, что уменьшение эффективной толщины диффузионного слоя на определенную величину, которое может, например, иметь место при коррозии металлов в условиях пониженной влажности, вызовет тем большее увеличение скорости кислородной деполяризаци, чем тоньше пленка электролита, находящаяся на поверхности металла. Если исходить из тех значений толщины диффузионного слоя, которые принимаются различными исследователями для неразмешиваемых электролитов с естественной конвекцией (0,05—0,07 см), то мы должны исключить возможность конвекционного переноса кислорода через слои меньшей толщины, т. е. допустить, что в этих случаях эффективная толщина диффузионного слоя совпадает с толщиной слоя электролита на катоде.  [c.114]

При использовании температурного фактора как. средства повышения скорости коррозии необходимо учитывать характер протекающего процесса. Скорость электродных реакций с повышением тёмпературы увеличивается, однако температура влияет и на ряд других факторов— растворимость кислорода, свойства защитных пленок на металлах и т. п. Необходимо иметь в виду, что в открытых системах скорость кислородной деполяризации возрастает при увеличении температуры лишь до определенного предела ( 60°С)- Дальнейшее ее повышение резко уменьшает растворимость кислорода, что приводит к обратным результатам, т. е. к уменьшению скорости коррозии.. Для процессов коррозии, протекающих с водородной деполяризаи ией (кислые электролиты), этих ограничений не существует и температуру можно повышать вплоть до температуры кипения. При этоад рекомендуется учитывать изменение температурного коэффициента процесса.  [c.10]

В природных водах коррозия большинства металлов протекает с кислородной деполяризацией, т. е. скорость коррозии определяется скоростью достижения кислородом поверхности металла. Кривая, приведенная на рис. III-14, показывает связь между коррозией металла и концентрацией растворенного в воде кислорода. Скорость коррозии углеродистой стали возрастает пропорционально увеличению до определенного значейия концентрации растворенного в воде кислорода. После достижения этого значения концентрации кислорода наступает резкое снижение скорости коррозии, вызванное пассивирующим действием- кислорода. Если в воде имек1тся хлор-ионы то достижение пассивного состояния затруднено, а в некоторых случаях даже невозможно.  [c.90]

Результаты исследований коррозии металлов в нейтральных средах, т. е. процессов коррозии с кислородной деполяризацией, оказываются как бы в противоречии с основной формулой коррозии (12). Так, при коррозии сталей в почвах, грунтах и морской воде влияние состава малолегированных углеродистых сталей практически столь незначительно, что может не приниматься во внимание. Коррозия чистого и загрязненного цинка в нейтральных растворах тоже практически одинакова.  [c.34]

Рассматривая рис. V, , У,3 и У,4, мы видим, что окислитель, восстанавливаясь, заставляет потенциал металла сдвинуться от равновесного в сторону более положительных значений. ТУГожно сказать, что металл поляризован окислителем, если под поляризацией понимать навязывание электроду потенциала, отличного от равновесного. И не совсем понятно, почему в современной литературе, особенно коррозионной, окислитель часто называют деполяризатором. Так, коррозию в кислотах, когда металл окисляется ионами Н" , навязывающими ему потенциал более положительный, чем равновесный, называют коррозией с водородной деполяризацией , коррозию при окислении металла кислородом — коррозией с кислородной деполяризацией . Мы останавливаемся на этом мелком вопросе потому, что название деполяризатор вместо окислитель искажает химическую природу явления. Окислитель поляризует металл, сообщая ему сверх равновесного потенциала некоторую величину Аф, вызывающую окисление, а не снижает Дф, т. е. не деполяризует металл.  [c.169]


Смотреть страницы где упоминается термин Коррозия металлов е кислородной деполяризацией : [c.40]    [c.349]    [c.180]    [c.582]    [c.313]    [c.11]    [c.11]    [c.582]    [c.168]   
Смотреть главы в:

Коррозия химической аппаратуры  -> Коррозия металлов е кислородной деполяризацией



ПОИСК



I кислородные

Деполяризация

Кислородная деполяризаци

Кислородная деполяризация

Коррозия кислородная

Коррозия металлов

Коррозия металлов кислородная

Особенности коррозии металлов с кислородной деполяризацией

Термодинамическая возможность коррозии металлов с кислородной деполяризацией



© 2025 Mash-xxl.info Реклама на сайте