Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Увлажнение атмосферы

Скорость коррозии металлов во влажной атмосфере в значительной степени зависит от увлажненности атмосферы.  [c.174]

Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно загрязненный присутствующими в воздухе химическими соединениями, играет роль электролита. Поэтому коррозия приобретает электрохимический характер. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов во многом отличается от коррозии металлов, погруженных в электролит.  [c.80]


Для каждого географического района на основании данных за многолетний период (до 30 лет) построены карты общей продолжительности увлажнения атмосферы земной поверхности (рис. 7.7). Сравнение их с картами коррозии металлов [5] характеризует зависимость процесса коррозии от увлажнения поверхностей конструкций (рис. 7.8. .. 7.11).  [c.145]

Полное описание закономерностей рассеяния и поглош.ения света аэрозольными частицами подразумевает, как мы установили, предварительное изучение и определение следующих микрофизических характеристик счетной концентрации, спектра размеров, химического и физического строения (которые определяют эффективный показатель преломления), формы и внутренней структуры частиц. При этом все микрофизические характеристики зависят от состояния увлажненности атмосферы. Это обстоятельство обусловливает то внимание, которое уделяется специалистами вопросам взаимосвязи оптических свойств атмосферы с влажностью воздуха как первичным метеорологическим фактором [1, 5, 18, 22, 24].  [c.124]

Атмосферные условия. Конструкции в открытой атмосфере подвергаются воздействию осадков, агрессивных газов, аэрозолей. Скорость коррозии металла в условиях открытой атмосферы зависит от продолжительности увлажнения поверхности и состава агрессивных сред. Коррозионная агрессивность атмосферы оценивается в зависимости от продолжительности общего увлажнения для территории СССР от 500 до 4800 ч/год. Определенное влияние оказывает климатическая зона (холодная, умеренная, теплая и т. д.). Общая продолжительность времени нахождения влажностной пленки на поверхности конструкции определяется как суммарная продолжительность различных атмосферных факторов дождя, тумана, росы, высыхания поверхности металла после выпадания осадков, оттепелей в зимний период [14, 21, 44, 82]. Для каждого географического района на основании данных за многолетний период (20—30 лет) построены карты общей продолжительности увлажнения атмосферы земной поверхности (рис. 3). Если сравнить их с коррозионными картами, построенными А. И. Голубевым и М. X. Кадыровым (рис. 4), то можно увидеть насколько велика зависимость коррозия металла от продолжительности увлажнения атмосферы земной поверхности.  [c.16]

Рис. 3. Карта продолжительности общего увлажнения атмосферы земной поверхности  [c.17]

За нормальное атмосферное давление принята одна физическая атмосфера, которая при О°С равна 1013,25 гПа. Максимальное давление водяного пара р в насыщенном воздухе зависит только от температуры смеси и не зависит от общего давления смеси, В процессах, связанных с изменением температуры, происходит изменение и в соотношении масс воздуха и паров. Водяные пары могут конденсироваться из воздуха, происходит его осушение, возможно также его увлажнение за счет испарения влаги. Однако масса сухой части влажного воздуха остается постоянной.  [c.44]


Этот недостаток особенно ярко проявляется в том случае, когда разбрызгивание нейтральной соли показывает, что для защиты стали лучше использовать кадмий, а не цинк. Известно, что в атмосфере промышленной среды цинк обеспечивает лучшую коррозионную защиту, чем кадмий, а в морских условиях целесообразность применения того или иного покрытия зависит от окружающей среды. Причины этих очевидных аномалий, вероятно, связаны с разной природой данных металлов и растворимостью продуктов коррозии, образующихся в различных условиях. Обильное количество электролита хорошей проводимости, обеспечиваемое при испытаниях на атмосферную коррозию, препятствует какому-либо защитному действию продуктов коррозии, которое может проявляться лишь при высыхании и повторном увлажнении, происходящих естественным путем. Кроме того, переоценивается эффективность действия протекторной защиты, создаваемой анодными покрытиями этого типа.  [c.157]

В процессе испарения электролита благодаря конвективной диффузии усиливается доступ кислорода к поверхности металла, поэтому при частых ее увлажнениях в относительно сухих атмосферах (испарение усиливается) скорость коррозии может быть выше, чем во влажных, где сохраняется пленка постоянной толщины [6].  [c.6]

Информация об атмосферной коррозии ряда металлов была получена с помощью системы коррозионных датчиков, позволяющих непрерывно регистрировать ее развитие в зависимости от относительной влажности, температуры, длительности увлажнения металла фазовыми слоями влаги и содержания агрессивных примесей в атмосфере. По метеорологическим параметрам были получены исходные данные для расчета скорости коррозии алюминия и его сплавов в любой климатической зоне [16—18].  [c.6]

Начавшийся после увлажнения поверхности металла коррозионный процесс протекает по законам химической я электрохимической кинетики. Скорость коррозии металла при этом зависит от степени увлажнения, химизма атмосферы (природы и концентрации ионов в пленке электролита), температуры, электрохимических свойств самого металла и продуктов его коррозии, частоты увлажнения и т. д. Нередко процессы коррозии осложняются фотохимическими явлениями и продуктами жизнедеятельности биосферы.  [c.70]

Для классификации атмосферы по времени увлажнения поверхности пленками влаги можно использовать ГОСТ 9.039—74 Коррозионная агрессивность атмосферы ГОСТ 16350—80 Климат СССР. Районирование и статистические параметры климатических факторов для технических целей ГОСТ 15150—69 Машины  [c.83]

Помимо увлажнения металла при выпадении осадков пленки воды толщиной 50—200 мкм могут образовываться и вследствие конденсации. При этом количество сконденсированной воды определяется перепадом температуры, а содержание в ней растворенных веществ — составом атмосферы. Зависимость скорости коррозии от условий конденсации подтвердилась экспериментальными данными, полученными при испытании образцов Ст 3 при 100%-ной относительной влажности и 25°С.  [c.34]

Увлажнение и снижение температуры газа на 40—60° С способствуют выпадению золы в дымососах, газоходах и нижней части дымовой трубы (см. 9-2). Одновременно при этом ухудшается рассеивание вредностей, выходящих из дымовых труб в атмосферу (см. 8-1).  [c.175]

Поскольку атмосфера может быть сильно запылена или крайне насыщена влагой, необходимо принять меры, чтобы предохранить жидкость от загрязнений. Попадание в жидкость твердых частиц может быть предотвращено установкой на линии, соединяющей резервуар с атмосферой, дыхательного клапана фильтрующего типа. Но он не будет защищать резервуар от попадания влаги. Очевидно также, что нельзя избежать увлажнения жидкости при помощи обычных осушающих средств. Проблема защиты жидкости от попадания влаги, по-видимому, может быть решена использованием резервуаров, изолированных от атмосферы. Такие резервуары должны выдерживать давление извне и противостоять некоторому внутреннему давлению. Для предотвращения чрезмерного подъема давления внутри резервуара они обычно оборудуются предохранительными клапанами.  [c.29]

В мокрой атмосфере коррозия протекает при относительной влажности воздуха, равной 100%. В таких условиях водяной пар конденсируется на поверхности металла и образует видимый невооруженным глазом слой воды. Этот вид коррозии протекает также при непосредственном увлажнении конструкций, например, при выпадении атмосферных осадков и т.п.  [c.62]


Для получения качественных вводов рекомендуется отжигать их при температуре 725 25°С в течение 20 мин в атмосфере увлажненного водорода (с целью получения окисной пленки, обеспечивающей лучшее сцепление металла со стеклом).  [c.74]

Рекомендуемые режимы отжига проволок из вольфрама, молибдена и сплава ВР-20 в атмосфере увлажненного водорода приведены в табл. 3-13.  [c.198]

Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно зафязненный присутствующими в воздухе химическими соединениями, является электролитом. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов отличается от коррозии металлов, полностью погруженных в электролит. Во-первых, в воздушной среде процессы коррозии протекают всегда с кислородной деполяризацией, т.к. тонкий слой электролита совершенно не препятствует диффузии кислорода воздуха к поверхности металла. Во-вторых, наличие кис.торода способствует переходу металла в пассивное состояние, т.е. торможению анодного процесса.  [c.63]

Установлено, что предел выносливости среднеуглеродис1Ч)й стали в нормализованном состоянии снижается в увлажненной атмосфере без содержания сернистого газа на 12 / и с примесью сернистого газа (0,27 /ц) на 19 /д. Эти результаты показывают, что при расчете деталей машин, работающих в условиях переменных напряжений и атмосферной корразии, также необходимо учитыват). снижение предела выносливости, вызываемое коррозией.  [c.26]

В разные геологические периоды аридность климата зависела от увлажненности атмосферы в палеозое ей отвечали годовые осадки порядка 500—800 мм, в мезозое — 300—500 мм, а в кайнозое менее 300 мм. Среднегодовые температуры тропетеского климата во времени снижались так для девона 32—34° С, для конца палеозоя и мезозоя 28—30 и для кайнозоя — 26—28° С.  [c.215]

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа  [c.381]

Во многих д.чэлектриках, используемых в электрической изоляции, величина р сильно зависит от их увлажнения. Даже малое количество влаги, поглощенное гигроскопическим образом, может существенно уменьшить его сопротивление. Молекулы воды хорошо диссоциируют на ионы, в воде растворяются частицы примесей, обычно содержащихся в технических диэлектриках солей, остатков ка гализагоров, кислот, щелочей и других трудно устранимых из материала ионогенных веществ. Влага с растворенными ионоген-иыми примесями проникает в поры и микротрещины, впитывается капиллярами, распределяется по границам раздела в многокомпонентном диэлектрике. Количество поглощенной изоляцией влаги. 1ЙВИСИТ от влажности окружающего воздуха и времени выдержки -образца во влажной атмосфере или в воде, если изоляция работает в контакте с водой. Процесс уменьшения Pt, изоляции имеет обратимый характер. При высушивании поглощенная влага удаляется и р,, возрастает. Для предотвращения увлажнения изоляции поверхность гигроскопичных материалов защищается не смачиваемыми водой водостойкими материалами, препятствующими проникновению влаги. Например, пористые электрокерамические материалы покрываются глазурью пористые диэлектрики пропитываются жидкими или твердеющими компонентами, которые плохо увлажняются.  [c.144]

Поверхность адсорбирует пыль, газы и другие вещества, образующиеся в результате протекающих в ходе эксплуатации изоляции физико-химических процессов в окружающей диэлектрик среде. Сильно загрязняется поверхность электроизоляционных конструкций (высоковольтных вводов, изоляторов и др.), работающих в загрязненной атмосфере промышленных и приморских районов. Образовавшийся на поверхности слой загрязнений имеет здесь такое небольшое электрическое сопротивление, что значение поверхностного тока утечки достаточно для нагрева поверхности до температур, больших 373 К (100 °С). При таком нагреве происходит вскипание воды на поверхности. Если этот процесс происходит в условиях увлажнения дождем, то перепады температур приводят к образованию микротрещин и механическому разрушению приповерхностного слоя изоляции. Не исключена и возможность воздействия различных агрессивных продуктов на приборы радиоэлектроники и автоматики при их использовании для регулирования работы электрических машин и аппаратов в устройствах энергетики, наземного, воздушного и водного транспорта. Поэтому в конструкциях приборов предусматриваются герметизация узлов с развитой поверхностью электроизоляционных промежутков, защита их поверхности специальными несмачиваемыми, незагрязняющими герметиками. Настройка и ремонт приборов, требующие разгерметизации, должны выполняться при условии, когда исключено всякое загрязнение и увлажнение электроизоляционных деталей. Элек-трокерамические электроизоляционные конструкции покрываются специальными грязестойкими глазурями, широко используется защита их поверхности гидрофобными кремыийорганическими лаками и герметиками. Покрытие из кремнийорганических соединений применяют для защиты поверхности электроизоляционных конструкций, изготовленных из стекла.  [c.148]

Влияние температуры на скорость коррозии металлов в естественных условиях, особенно в сельской атмосфере, выяснить не удается. Регрессионный анализ многочисленных данных свидетельствует о том, что в области температур от —5° до 25° С скорость коррозии цинка, кадмия, алюминиевыж сплавов изменяется несущественно. Это отчасти связано с тем, что средневзвешенная температура фазовых пленок воды, образующихся при выпадении осадков, изменяется в различных климатических районах в небольшом диапазоне (от 2,5° в районе Мурманска до 12,3° в Батуми). Поэтому во многих климатических зонах температурный фактор атмосферы не оказывает заметного влияния на скорость коррозии (при расчете коррозии на единицу времени увлажнения). Разумеется, что при температурах ниже нуля заметная коррозия может протекать только в сильно загрязненной атмосфере, когда на поверхности металла образуются пленки концентрированных электролитов, температура замерзания которых заметно ниже, чем чистой воды.  [c.79]


Прогнозированиескоростиатмосферной коррозии. Любую математическую модель атмосферной коррозии следует рассматривать как сложную функцию температурно-влажностного и аэрохимического комплексов атмосферы. В условиях открытой атмосферы основными параметрами, определяющими скорость коррозии, являются продолжительность увлажнения поверхности фазовой пленкой влаги (2тф), концентрация коррозионно-активных примесей (С ) и, в меньшей степени,—температура воздуха./Следовательно, в первом приближении, коррозию металлов в открытой атмосфере можно рассматривать как функцию Етф и С или 2та Vi. Сх — для закрытых помещений.  [c.83]

Параметры климатических факторов регламентированы применительно к тропическому климату земного шара (ГОСТ 24482—80) и применительно к территории СССР (ГОСТ 16350—80). Факторы и параметры коррозионной агрессивности атмосферы, методы их определения устанавливает ГОСТ 9.039—74. К таким характеристическим факторам относятся увлажнение поверхности металла фазовой или адсорбционной пленками влаги, а также загрязнение воздуха коррозионноактивными агентами. Продолл<ительность общего  [c.50]

Гигроскопическая пыль приносит из влажного воздуха на поверхность металла частицы воды. Пыль многих материалов, например угля, поглощает из атмосферы активные газы и переносит их на поверхность металла. Таким образом, как органическая, так и неорганическая пыль в равной мере способствует коррозии и износу металла. В точных механизмах и измерительных приборах пыль увеличивае г трение и вследствие этого снижает их точность. На лакокрасочных покрытиях увлажненная  [c.142]

Факторы коррозионной агрессивности атмосферы определяются видо 1 увлажнения металлических поверхностей фазовой влагой (пленка, образующаяся под действием-росы, мороси, дождя, снега и др.) или (и) адсорбциопно влагой (пленка, образующаяся при относительной вланшости 70% и более нря отсутствии осадков и росы).  [c.10]

Параметры коррозионной агрессивности атмосферы характеризуются продолжительностью увлажнения поверхности (ч/год) а) общего (o-t-в), б) фазовой влагой и в) адсорбционной влагой, а такн<е концентрацией в воздухо коррозионно-активного агента (сернистый газ, хлориды и аммиак). В стандарта значения параметров приведены а — в виде карты СССР с изолиниями одинакового общего увлажнения (б-Ьв) и раздельно для бив — в виде численных данных для 121 географического пункта СССР. Общую коррозионную агрессивность атмосферы оценивают по девятибалльной шкале (1, 2, 3,. .., 9), где балл 1 соответствует наименьшей продолжительности общего увлажнения, ч/год.  [c.10]

На рис. 5-9 представлена схема системы технического кондиционирования газов на танкерах типа Крым , Дымовые котельные газы с температурой 120—160 °С поступают сначала в первый циклонно-пенный аппарат (ЦПА), в котором при высоком коэффициенте орошения (Вн = 8 12) происходит их охлаждение до температуры 35 °С при расчетной температуре забортной воды 28°С. Степень очистки от сажи и сернистых соединений достигает 95—97 Поохлажденные и очищенные газы поступают далее во второй ЦПА, в котором при непосредственном контакте с 39—42 %-ным раствором хлористого лития происходит их осушка до относительной влажности не более 40 % при температуре 35 С. После газодувок для снижения температуры газов (до 45 °С и ниже) установлены поверхностные теплообменники. Регенерацию раствора хлористого лития производят в третьем циклонно-пенном аппарате. Раствор предварительно нагревают паром до 100—105 °С в поверхностном теплообменнике, а затем пропускают через ЦПА, в котором при непосредственном контакте с прокачиваемым через аппарат воздухом происходит удаление влаги из раствора. Насыщенный раствор стекает в цистерну, а увлажненный воздух удаляется в атмосферу. Нейтральный газ подается в танки судна.  [c.150]

Талла труб внутри, с наружной стороны из-за агрессий ного действия грунта, тепловой изоляции, блуждающих токов, а также при периодическом увлажнении и аэрации поверхности незащищенных труб. Особенно часто появление свищей в конденсатопроводах. Парения у них получаются при утечках в атмосферу и вторичном  [c.319]

Проведенные исследования брызгальных бассейнов большой производительности включали в себя разработку нового способа оценки их охлаждающей способности. Способ основывается на экспериментальном изучении каждого брызгального устройства на опытном стенде. На первом этапе исследований определяется связь между температурой и влажностью воздушного потока в широком диапазоне их значений. На втором этапе на том же опытном стенде определяются тепловлажностные характеристики факела выноса, образующегося в результате взаимодействия ветрового потока с капельным потоком исследуемого брызгального устройства. Психрометром измеряются температура и влажность воздуха с наветренной стороны брызгального устройства (вне капельного потока) и температура и влажность воздуха в тепловлажностном факеле через определенное расстояние по направлению его движения. Измерения по ходу факела, проводимые, например, через 10 м, заканчиваются, когда температура и влажность воздуха окажутся равными температуре и влажности воздуха с наветренной стороны брызгального устройства, т. е. когда увлажненный и нагретый воздух полностью диссипируется в окружающей атмосфере.  [c.62]

Хорошо исследованы композиции оксид алюминия - хром. Исходные порошки оксида алюминия или твердого раствора Al Oj- rgOg, содержащего до 10% r Oj, и хрома с размером частиц < 40 мкм смешивают в сухом виде либо при увлажнении. Для получения заготовок из смеси порошков применяют шликерное формование, прессование в стальных пресс-формах при давлении 70 - 85 МПа без пластификатора, гидростатическое формование при давлении до 700 МПа или горячее прессование. Спекают заготовки в атмосфере высокочистого водорода (точка росы не хуже -60 °С) с добавкой небольшого количества паров воды для регулируемого окисления хрома. Образующийся оксид хрома вовлекается в механизм связывания - прочно сцепляется с хромом и образует твердый раствор с оксидом алюминия. Температура спекания составляет 1450-1500 °С. В качестве металлической составляющей часто также используют никель, кобальт, железо и сплавы, например хромомолибденовый.  [c.187]

Современные крупные сталеплавильные дуговые печи во время работы выделяют в атмосферу большое количество запыленных газов. Применение кислорода и порошкообразных материалов еще более способствует этому. Содержание пыли в газах электродуговых печей достигает 10 г/м и значительно превышает норму. Для улавливания пыли производят отсос газой из рабочего пространства печей мощным вентилятором. Для этого в своде печи делают четвертое отверстие с патрубком для газоотсоса. Патрубок через зазор, позволяющий наклонять или вращать печь, подходит к стационарному трубопроводу. По пути газы разбавляются воздухом, необходимым для дожигания СО. Затем газы охлаждаются водяными форсунками в теплообменнике и направляются в систему труб Вентури, в которых пыль задерживается в результате увлажнения. Применяют также тканевые фильтры, дезинтеграторы и электрофильтры. Используют системы газоочистки, включающие полностью весь электросталеплавильный цех, с установкой зонтов дымоотсоса под крышей цеха над электропечами.  [c.174]


Общий вид установки показан на рис. 100. Установка состоит из очистительной части А и рабочей части В, в которой производится увлажнение или очистка воздуха. Очистительная часть состоит из ряда поглотительных колонок для очистки воздуха от загрязняющих примесей. Колонка 1 наполнена стеклянной ватой с парафиновыми стружками для очисткй от пыли, механиче ких загрязнений и органических соединений. U-образные трубки наполнены натронной известью и служат для очистки воздуха от углекислого газа. Склянки Тищенко 5 и 4 наполнены 5%-ным раствором бертолетовой соли и спиртовым раствором метилОранжевого для поглощения, соответственно, сернистого газа и хлора [150]. В случае необходимости очистки воздуха от других газов (аммиак, окислы азота) в очистительную часть устанавливаются дополнительные склянки с соответствующими поглотителями. В процессе работы поглотительные растворы, продолжительность действия которых зависит от степени загрязнения атмосферы, периодически меняются. Очищенный воздух поступает в специальные сосуды 5, на дно которых наливается насыщенный раствор соли, создающий определенную относительную влажность. Верхняя часть сосудов заполнена стеклянными трубками для увеличения поверхности соприкосновения воздуха с раствором. Воздух, пробулькивающий через насыщенный раствор соли, увлажняется или осушается в зависимости от поставленной задачи.  [c.163]


Смотреть страницы где упоминается термин Увлажнение атмосферы : [c.146]    [c.782]    [c.380]    [c.180]    [c.173]    [c.181]    [c.9]    [c.26]    [c.460]    [c.27]    [c.129]    [c.51]    [c.88]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.146 ]



ПОИСК



Атмосфера



© 2025 Mash-xxl.info Реклама на сайте