Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точение Инструменты

Технологические режимы и возможности точения инструментами из сверхтвердых материалов проявляются при производстве деталей двигателей (табл. 2).  [c.692]

При точении инструмент перемещается параллельно оси вращающейся заготовки, как показано на рис. 7.1. Скорость подачи инструмента бывает обычно значительно меньшей, чем окружная скорость заготовки. При рассмотрении относительной скорости между инструментом и заготовкой скорость подачи может не учитываться. Из рис. 7.1 видно, что резание осуществляется кромками аЬ и Ьс. Относительная важность этих двух кромок для процесса резания будет зависеть от конфигурации сечения срезаемого слоя.  [c.124]


Полуавтоматы обычно оснащают приспособлениями для многорезцового точения фасонных, в том числе шаровых поверхностей (фиг. 33, е), для точения конических поверхностей (фиг. 33, ж), для продольного точения инструментами, закрепленными в поперечных супортах (фиг. 33, з), для нарезания резьб гребенками и других токарных работ. Патронные полуавтоматы часто приспосабливают для точения валиков в центрах.  [c.59]

При точении инструмент неподвижен и направление силы резания остается постоянным при фрезеровании направление результирующей силы резания все время изменяется кроме того силы все время меняются вследствие входа и выхода зубьев фрезы из детали. Поэтому коэффициенты направления при фрезеровании не являются константами, а описываются периодическими функциями с разрывами. Расчет устойчивости процесса с такими функциями сложен и требует затрат большого количества времени, поэтому данные функции заменяются их средними значениями. Как показывают сравнительные расчеты, эти упрощения вносят незначительную погрешность.  [c.12]

Сравнение скоростей резания при точении инструментом, оснащенным керамикой и твердым сплавом  [c.752]

При точении инструментом из быстрорежущей стали к1 = Убо/70, где 70 - скорость резания (м/мин) при обработке стали 45.  [c.79]

Для ориентировки приводим уровень применяемых режимов резания для СТМ. Алмазное точение инструментами из поликристаллических искусственных алмазов осуществляется при подачах 0,03 - 0,3 мм/об, глубинах резания 0,05 - 1 мм со скоростями 500 - 300 м/мин - по алюминию и алюминиевым сплавам, 500 - 1500 м/мин - по меди и медным сплавам. При фрезеровании скорости резания повышаются в 1,5 - 2 раза. Точение инструментами на основе КНБ закаленных сталей и отбеленных чугунов ведут с подачами 0,03 - О, 15 мм/об, глубинами резания 0,05 - 3 мм и скоростями 30 - 100 м/мин, серых и высокопрочных чугунов, медных сплавов  [c.162]

Для труднообрабатываемых материалов скорость резания при точении инструментами с покрытием обычно может быть повышена на 12- 13% в сравнении с инструментами без покрытия. При использовании покрытий стойкость может возрасти в 1,5 - 3,5 раза.  [c.167]

МЫ встречаем в деталях этой группы принцип обработки с вращением заготовки детали относительно инструмента, как и для круглых точеных деталей.  [c.168]

Подачей s называют путь точки режущей кромки инструмента относительно заготовки в направлении движения подачи за один оборот (рис. 6.4) либо один ход заготовки или инструмента. Подача Б зависимости от технологического метода обработки имеет размерность мм/об — для точения и сверления мм/дв. ход — для строгания и шлифования.  [c.257]


Наиболее широко используют алмазные резцы для тонкого точения и растачивания деталей из сплавов алюминия, бронз, латуней и неметаллических материалов. Алмазный инструмент применяют для обработки твердых материалов, германия, кремния, полупроводниковых материалов, керамики, жаропрочных сталей и сплавов. При использовании алмазных инструментов повышается качество обработанных поверхностей деталей. Обработку ведут со скоростями резания более 100 м/мин. Поверхности деталей, обработанные в этих условиях, имеют низкую шероховатость и высокую точность размеров.  [c.280]

Технологический метод формообразования поверхностей заготовок точением характеризуется двумя движениями вращательным движением заготовки (скорость резания) и поступательным движением режущего инструмента — резца (движение подачи). Движение подачи осуществляется параллельно оси вращения заготовки (продольная подача), перпендикулярно к оси вращения заготовки (поперечная подача), под углом к оси вращения заготовки (наклонная подача).  [c.293]

Процесс резания при сверлении протекает в более сложных условиях, чем при точении. В процессе резания затруднены отвод стружки и подвод охлаждающей жидкости к режущим кромкам инструмента. При отводе стружки происходит трение ее о поверхность канавок сверла н сверла о поверхность отверстия. В результате повышаются деформация стружки и тепловыделение. На увеличение деформации стружки влияет изменение скорости резания вдоль режущей кромки от максимального значения на периферии сверла до нулевого значения у центра.  [c.311]

Выбор величин элементов резания и параметров инструмента для точения ведется в следующем порядке  [c.136]

Обработку наружных плоскостей корпусов производят строганием, фрезерованием, точением, шлифованием и протягиванием. В единичном и мелкосерийном производствах широко используют строгание из-за простоты и дешевизны инструмента и наладки. Производительность строгания низкая. Повысить ее можно путем одновременной обработки группы деталей, располагая их в один или два ряда на столе станка.  [c.412]

К обшим видам обработки резанием относится так называемая лезвийная обработка, выполняемая лезвийными инструментами (рис. 1.1). Лезвийная обработка с вращательным главным движением резания и возможностью изменения радиуса его траектории называется точением. Точение наружной поверхности с движением подачи вдоль образующей линии обработанной поверхности — обтачивание (рис. 1.2). Точение внутренней поверхности с движением подачи вдоль образующей поверхности — растачивание. Точение торцовой поверхности — подрезание.  [c.18]

При автоматическом цикле обработки резанием следует учитывать путь подхода инструмента к заготовке для облегчения работы инструмента в начале резания. На рис. 1.5, б показан путь 1 при точении на многорезцовом токарном полуавтомате, на  [c.21]

Электрохимическая обработка, при которой форма электрода-инструмента отображается в заготовке, называется электрохимическим объемным копированием. Если электрод-инструмент углубляется в заготовку, образуя отверстие постоянного сечения, то данный вид ЭХО есть электрохимическое прошивание. Возможно электрохимическое точение и электрохимическая отрезка. При электрохимическом точении заготовка вращается, а электрод-инструмент поступательно перемещается.  [c.304]

В конструкции 9 поверхности, обрабатываемые различными инструментами, отделены одна от другой. Наружная поверхность Л двутаврового стержня, обрабатываемая цилиндрической фрезой, приподнята на величину 5 по отношению к головке шатуна внутренние полости / двутавра, обрабатываемые торцовой фрезой, отодвинуты от головки на расстояние 3-1 консоли головки, обрабатываемые точением, отделены от стержня расстоянием Хг-  [c.124]

Свободные переходы между ступеньками и буртиками точеных валов, не служащие опорными поверхностями (рис. 165, а, в), целесообразно выполнять по конусу с углом наклона, равным углу главной режущей кромки проходного резца в плане (обычно 45°), и галтелью у основания, равной стандартному закруглению у вершины резца Я = 1 мм (виды б, г). Это избавляет от необходимости менять режущий инструмент и подрезать торец.  [c.147]


Формы при точении определяются характером перемещения и фор мой режущей кромки инструмента. Рис. 1. Цилиндрическая а — при обточке б — при расточке. Рис. 2. Плоская торцовая а — наружная й — внутренняя. Рис. 3. Коническая а — обточка б — расточка.  [c.80]

Удаляемый материал. Это часть заготовки, удаляемая при обработке установленным инструментом в заданном цикле токарной обработки. Для таких циклов, как сверление и контурное точение, удаляемым материалом могут быть  [c.108]

Основными видами обработки резанием являются точение, строгание, сверление, фрезерование и шлифование. Обработка металлов резанием осуществляется на металлорежущих станках — токарных, строгальных, сверлильных, фрезерных и шлифовальных — с использованием различных режущих инструментов — резцов, сверл, фрез, шлифовальных кругов.  [c.66]

Скорость резания при точении v — линейная скорость точек обрабатываемой поверхности заготовки, м/мин, которая определяется следующим уравнением v — 10 лОп, где D — диаметр обрабатываемой поверхности заготовки, мм п — частота вращения заготовки, об/мин. Подача s при точении количественно оценивается расстоянием, на которое перемещается режущий инструмент — резец — в направлении движения подачи за один оборот заготовки, и имеет размерность мм/об.  [c.67]

Стандартизация резьб. Нарезание наружной резьбы на боковой поверхности винтов обычно производят плашками, а внутренней резьбы в отверстиях гаек — метчиками. Существуют и другие способы изготовления резьб точение, фрезерование, накатка. Для взаимозаменяемости винтов и гаек и сокращения номенклатуры инструмента типы и размеры резьб стандартизованы. По форме профиля различают резьбы (рис. 11.2) а — прямоугольную, б — трапецеидальную, в — упорную, г — треугольную.  [c.287]

Для механической обработки металлических материалов, требующих малого угла заострения режущей кромки, например для точения стальных винтов для древесины для специальных случаев механической обработки дерева для инструментов для волочения (протяжки) и прессовых штампов для буров ударно-перфораторного бурения, работающих с большим напряжением  [c.558]

Набор из 18 профилей поверхностей, полученных распространенными технологическими методами окончательной обработки — точением, шлифованием, хонингованием, шабрением и полированием и записанных при вертикальных увеличениях от 1000 до 40 000 и горизонтальных увеличениях У 160 и 400, показан на рис. 3. Из этого рисунка следует, что неровности всех представленных на нем профилей повторяются с той или иной степенью регулярности на каждом из 18 профилей даже при их сравнительно небольшой длине можно проследить повторение близких по форме отдельных выступов и впадин через некоторые более или менее одинаковые отрезки длины. Сравнивая между собой 8 профилей (записанных при увеличениях вертикальном 4000 и горизонтальном 160) — /, 2, 3, 6, 7, 11, 14, 16, замечаем, что 16-й профиль поверхности бронзового вкладыша подшипника скольжения, полученной растачиванием с помощью лезвийного инструмента на станке токарного типа, более регулярен, чем профили остальных поверхностей, полученных абразивным инструментом при шлифовании и хонинговании. На этом профиле вершины неровностей периодически повторяются через отрезки длины, примерно равные подаче (осевому перемещению) резца за один оборот изделия. Однако и на шлифованных поверхностях наблюдается некая регулярность. Так, например, на профиле № 2 (рис. 3) заметны повторения характерного выступа, имеющего с правой боковой стороны 4 мелких зазубрины , которые затем обрываются, а потом опять восста-  [c.7]

Взаимосвязь макронапряжений с технологическими факторами. Технологические факторы (методы и режимы обработки, геометрия и износ режущего инструмента, СОЖ и др.) оказывают большое влияние на величину и знак остаточных напряжений. Точение обычно вызывает появление растягивающих напряжений величиной до 30—70 кгс/мм , глубина распространения их находится в пределах от 50 до 200 мкм в зависимости от условий обработки. При фрезеровании возникают как растягивающие, так и сжимающие напряжения, последние более характерны для попутного фрезерования жаропрочных сплавов. Фрезерование титановых сплавов чаще всего сопровождается образованием сжимающих напряжений. В процессе шлифования, как правило, создаются растягивающие напряжения. Величина и знак макронапряжений после механического полирования зависят от предшествующей обработки, но в большинстве случаев полирование способствует наведению незначительных сжимающих напряжений (до 20— 30 кгс/мм ).  [c.57]

Глубина и степень наклепа при полировании после точения значительно больше, чем при полировании после шлифования. Эта разница еще больше, если предшествующая обработка (точение или шлифование) велась тупым инструментом. Например, при полировании после точения острым резцом глубина наклепа 76 мкм, а при полировании после шлифования острым кругом — 38 мкм, т. е. глубина наклепа уменьшилась почти в 2 раза.  [c.108]

Выглаживание алмазным инструментом применяется для обработки плоских и цилиндрических поверхностей из цветных металлов и сплавов и стали, в том числе термообработанной до HR 65. Предварительная обработка — шлифование или тонкое точение. Инструмент с алмазом размером 0,10—0,15 Г (0,5—0,75 карата), обработанным по сфере радиусом 0,75—5 мм, прижимается пружиной к поверхности детали давлением 5—18 кГ. Режимы выглаживания на токарных станках подача 5=0,013-7-0,100 мм1о6, скорость о =0,5 3,5 м/сек. Оптимальное число проходов — один-два. В результате выглаживания получается зеркальная поверхность. Шероховатость поверхности до у12. Микро-твердость поверхностного слоя повышается в 1,3—2 раза, износостойкость поверхности — до 2 раз, усталостная прочность —в 1,5—2,5 раза. Обработка выполняется на оборудовании, при работе которого не возникает сильных вибраций.  [c.692]


Скоростью резания v называют расс юяние, пройденное точкой режущей кромки инструмента относительно заготовки в единицу времени. Скорость резания имеет размерность м/мин или м/с. Если главное движение вращательное (точение), то скорость резания, м/ми и  [c.257]

Ур и Пр даны в справочниках для конкретных условий обработки. Аналогичные формулы существуют для определения сил и Р . Условно считают, что для острого резца с 7 = 15°, <р == 45°, X = О при точении стали без охлаждения Р, Р -. Р, = 0,45 0,35. Отношения Рц Р, и Я, Р, р )стут с увеличением износа резца, уменьшение угла ф увеличивает отношение Ру Р ,, а повышение подачи приводит к росту отношения Я, Р . Знание величин и направлений сил Р,, Ру и Р, необходимо для расчета элементов станка, приспособлений и режущего инструмента.  [c.265]

Пример оценки ММ на чувствительность к случайным отклонениям. При выборе оптимального варианта однократной обработки точением ступени жесткого вала (длина 100 мм, диаметр 100 мм) из стали 45 резцом, оснащенным твердым сплавом Т15К6, действуют три ограничения по мощности, расходуемой на резание,— ( — глубина резания, а —подача) стойкости инструмента— высоте неровностей обработанной поверх-  [c.81]

Совмещение во времени операций обработки (синхронизация переходов). К этому способу относятся обработка комбинированным инструментом и многоинструментная обработка (многорезцовое точение и строгание, фрезерование ыаборо.м фрез). Наиболее полное выражение этот способ получил в агрегатных станках, производящих одновременную обработку нескольких поверхностей заготовки.  [c.101]

Торцовые поверхности трения отверстий предпочтительнее обрабатывать способами, при которых инструмент (или изделие) вращается вокруг центра отверстия (точение, растачивание, зенкерование). Остающиеся после такой обработки микрориски благоприятнее ориентированы относительно направления рабочего движения, чем продольные или поперечные риски, образующиеся при строгании и фрезеровании. Поверхности, обработанные этим способо.м, прирабатываются быстрее. Кроме того, при такой обработке легче обеспечить п пендикулярность поверхности трения к оси вращения.  [c.139]

При обработке крепежных отверстий стального фланца цековкой (вид д) врезание в конус п, соединяющий фланец со стенками цилиндра, вызывает смещение инструмента особенно потому, что размеры детали не позволяют установить инструменг на жесткой оправке. Если не изменять конфигурации фланца и не увеличивать выноса крепежных отверетий, то необходимо обрабатывать фланец фрезой увеличенного диаметра на жееткой оправке, подводимой сбоку (вид е). Можно также увеличить диаметр В и обработать фланцы точением (вид ж).  [c.140]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]

Рис, 7,1У. Зависимость стойкости Г инструмента из сплава BKIO-XOM oi скорости резания I при точении титанового сплана В ГЗ-1 и вида предварительного ионно-лучено1 о воздействия (иодача - (1,14 мм/об глубина реза ния - 1,5 мм)  [c.228]

При точении главное движение Л г — вращательное движение заготовки, движение подаЧи Д., — прямолинейное поступательное движение режущего инструмента — резца (рис. 2.19, а).Перемещением резца относительно заготовки срезается ее исходная поверхность, которая называется обрабатываемой поверхностью /, и образуется новая поверхность, которая называется обработанной поверхностью 3. Временно существующая пойерхность в процессе  [c.66]

Скорость резания и при сверлении (зенкерованин и развертывании). фрезеровании и 1плифовании определяется, так же как и при точении, только диаметром режуп1его инструмента. Скорость резания V при шлифовании имеет вид v - 10 л0п/60 м/с).  [c.68]

Подача s и глубина резания А определяются аналогично точению, только при строгании подача s имеет размерность мм/дв. ход (дн. ход - двойной ход резца или заготовки), а при сверлении (зен-керовании, развертывании) и фрезеровании также рассматривается подача на режущую кромку (зуб) режущего инструмента s , которая определяется уравнением = s/г, где г — количество режущих кромок (зубьев) инструмента. При фрезеровании рассматривается также минутная подача s, которая численно оценивается значением перемещения фрезы относительно заготовки за минуту и имеет размерность мм/мин. При шлифовании подача s (мм/об) определяется в долях ширины [илифовальиого круга В s кВ, где В — ширина шлифовального круга, мм, а ft — коэффициент, принимаемый в зависимости от точности обработки 0,2—0,8.  [c.68]

Для чернового точения при неравномерном сечении среза и прерывистом резании, для строгания, чернового фрезерования, сверления и рассверливания нормальных и глубоких отверстий и чернового зенкерования при обработке чугуна, цветных металлов и их сплавов и неметаллических материалов при недостаточной жесткости системы станок—деталь—инструмент (изношенные станки и пр.). Допускается применение также для обработки углеро.иистых, легированных и труднообрабатываемых сталей, для чернового точения стальных поковок, штамповок и отливок по корке и окалине в тех случаях, когда при применении сплава T5KI0 происходит выкрашивание режущей кромки инструмента  [c.545]

Для точения отбеленного чугуна, нержавеющих никельхро.мовых сталей. Для точения углеродистых сталей при малых сечениях среза и низких скоростях резания. Для обработки сталей только в тех случаях, когда при применении титановых сплавоЕ (Т15К6 и др.) происходит выкрашивание режущей кромки инструмента  [c.545]

Для точения и фрезерования чугуна, отбеленного чугуна, ковких литых заготовок, дающих короткую стружку, а TaKiiie закаленной стали с пределом прочности на разрыв свыше 180 kI Imm K Для механической обработки сплавов легких металлов, медных сплавов, пластмасс, твердой (жесткой) бумаги, стекла, фарфора, кирпича, горных пород. Для изготовления сверл, зенковок, разверток Для точения п фрезерования чугуна твердостью до // = 200. Для строгания чугуна (см. также марку ТТЗ). Для механической обработки сплавов легких металлов, меди, медных сплавов. Для всякого рода изнашивающихся частей, например направляющих кулис, скользящих втулок, центров токарных станков, частей для измерения и испытания инструментов для протяжки буровых коронок Для механической обработки твердых пород дерева, спрессованного и пропитанного смолами листового материала на деревянной основе и тому подобных материалов. Для прессформ для керамических материалов. Для инструментов для волочения (протяжки) буров для ударно-перфораторного бурения и дру1их горных инструментов, испытывающих сильное напряжение  [c.558]


Аналогичные результаты получены при исследовании наклепа после полирования фетровыми кругами сплава ЭИ437А, где полированию предшествовало точение острым и изношенным режущим инструментом (см. табл. 3.4, режимы 25—26). Наклеп поверхностного слоя после полирования фетровыми кругами с припуском на полирование не более 0,05—0,1 мм на сторону определяется в основном характером предшествующей обработки.  [c.107]


Смотреть страницы где упоминается термин Точение Инструменты : [c.362]    [c.149]    [c.275]    [c.137]    [c.114]    [c.186]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.30 ]



ПОИСК



Точение



© 2025 Mash-xxl.info Реклама на сайте