Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологический электрохимическое

Так как в большинстве технологических процессов химических производств в основном преобладают растворы электролитов, то и процессы электрохимической коррозии являются в этих производствах основными, наиболее значительными по разрушающему действию на металлы.  [c.7]

Проведенными в Академии коммунального хозяйства исследованиями установлено, что технологические свойства электролитических коагулирующих растворов зависят от типа используемого электролита, электрохимических условий процесса электролиза и времени хранения готового продукта.  [c.221]


В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]

Учитывая вредность и опасность многих технологических операций, необходимо установить характер и источник возможных опасностей и при устройстве и содержании цехов гальванических покрытий предусматривать соответствующие меры, которые позволяли бы устранять причины травматизма и профессиональных заболеваний. Степень опасности основных факторов при электрохимической обработке приведена а табл. 34.  [c.81]

Интенсивные коррозионные разрушения характерны для конструкций, работаюш.их в жидких средах, вызывающих электрохимическую коррозию. Особенно опасный вид разрушения — коррозионное растрескивание возникает при одновременном действии коррозионной среды и статических или повторно-статических нагрузок. При этом свойства металла, определяющие его восприимчивость к коррозионному воздействию среды, непосредственно связаны с параметрами технологического процесса.  [c.440]

Очень часто конечной операцией изготовления полуфабрикатов или деталей из титановых сплавов является химическое травление (листы, ленты, трубы, проволока, штамповка и пр.) с целью удаления газонасыщенного слоя. Оно в значительной степени определяет уровень усталостной прочности. Наиболее часто применяемая операция обработки большинства листов, труб и других профилей — кислотное травление. В результате такой обработки циклическая прочность снижается на 20 —40 % [ 173]. Наибольшее влияние травления на усталость наблюдается у высокопрочных сплавов, наименьшее —у технически чистого титана. Заметное снижение усталостной прочности титана происходит при других видах химической обработки, например после электрохимической обработки (ЭХО). В настоящее время находит все более широкое применение ряд новых видов электрохимической и электрогидравлической обработки поверхности металлов. Влияние этих видов обработки (как финишной) на усталостную прочность титановых сплавов мало изучено. Как правило, после таких видов обработки на поверхности металла образуются тонкие наводороженные слои, что для титановых сплавов нежелательно. Электрогидравлическая обработка поверхности (электро-разрядная, электроимпульсная, электроискровая) —один из новых технологических видов очистки отливок, штамповок и других "черных" поверхностей заготовок. Эта поверхностная обработка сопровождается комплексом физико-химических и механических воздействий на металл [174]. Для титановых сплавов она благоприятна, по-видимому, вследствие сильного поверхностного наклепа и образования сжимающих напряжений у поверхности.  [c.182]


Материалы, обсуждаемые в этой главе, как правило, представляют собой смесь двух или более компонентов большинство из них получают методами порошковой металлургии. Некоторые из них изготовляют методом внутреннего окисления, при котором один из металлов сп.лава превращается в окисел. При этом получаемые композиции обладают особыми электрическими, механическими, фрикционными и технологическими свойствами, превосходящими свойства традиционных металлов и сплавов. Эти композиционные материалы находят применение в электрических контактах, в постоянных магнитах, при сварке сопротивлением, в электрических разрядниках, в электрохимических установках и электрических щетках.  [c.416]

Разработаны принципы комплексной защиты техники [21], включающую защиту от биоповреждений составами, содержащими вещества многоцелевого назначения (обладающими свойствами ингибиторов коррозии и т. п.) и неопасными для людей. Защита осуществляется нанесением тонких пленок слабых водных и эта-нольных растворов этих веществ на поверхность эксплуатирующихся конструкций распылением в замкнутых воздушных пространствах и с ограниченным доступом воздуха составов,, содержащих легколетучие вещества с фунгицидными свойствами введением указанных веществ в растворы для химического и электрохимического полирования поверхностей металлов и нанесения покрытий в условиях производства и ремонта техники применением средств дополнительной защиты (пассивирующие растворы, рабоче-консервационные масла, легко снимаемые покрытия, содержащие биоциды) приданием биоцидных свойств растворам для очистки поверхностей (травящие, обезжиривающие, нейтрализующие растворы и пасты) сочетанием приведенных методов со статической или динамической осушкой воздуха добавлением биоцидных веществ в состав полимерных материалов, ЛКП на стадии приготовления их технологических смесей использованием биоцидных полимеров.  [c.97]

Установлено, что с помощью технологических мероприятий в значительной мере можно управлять электрохимическим поведением металла у сварных соединений, выполненных автоматической сваркой (рис. 107, кривая 2), меньший градиент потенциалов в зоне шва, чем у образцов ручной дуговой сварки, выполненной электродами с фтористо-кальциевым покрытием (кривая /), а у сварных соединений, выполненных электродами с рутиловым покрытием, обнаружено иное электрохимическое поведение (кривая 7) экстремальное значение разности потенциалов здесь также соответствует зоне шва, однако потенциал металла шва у них является более благородным, чем у основного металла.  [c.239]

В отличие от других материалов для алюминия характерно широкое применение для защиты от коррозии оксидных пленок, получаемых на поверхности изделий химическими или электрохимическими методами. Получаемые оксидные пленки обладают высокими адгезионными свойствами, являясь хорошей основой для лакокрасочных покрытий. При введении в растворы для анодирования специальных добавок удается получить широкую гамму декоративных покрытий. Литейные алюминиевые сплавы имеют ряд положительных технологических свойств, позволяющих получать отливки сложной формы. Основные легирующие элементы литейных алюминиевых сплавов можно разделить на три группы  [c.75]

Условиями для дальнейшего широкого внедрения анодной электрохимической защиты являются автоматизация технологических процессов и производство высоконадежных средств регулирования и контроля потенциала.  [c.146]

После электрохимической обработки и электролитического полирования не происходит упрочнения и изменения микроструктуры в поверхностном слое, если при этом отсутствует технологическая наследственность, связанная с предшествующей обработкой. С увеличением плотности тока улучшается чистота поверхности и уменьшается растравливание по границам зерен.  [c.130]

Влияние на усталость параметров качества поверхностного слоя после различных методов и режимов деформационного упрочнения и предшествующей ему электрохимической и механической обработки сплава ВТ9 изучали на образцах и лопатках, изготовленных по различным технологическим вариантам.  [c.206]


При механической, электроэрозионной, электрохимической и других видах окончательной обработки деталей воздействие технологического процесса ограничивается областью поверх-  [c.223]

Особое значение приобретает разработка топливно-энергетического баланса высокотемпературных и иепосредственно химико-технологических (электрохимических) процессов в силу того, что именно для технологических процессов в настоящее время важно выявить, экономическую целесообразность использования различных взаимозаменяе.мых видов нагрева (электротермия, пламенный нагрев),, а для пламенных процессов — различных взаи-м озаменяемых видов горючего.  [c.25]

В машиностроении часто возникают технологические проблемы, связанные с обработкой материалов и деталей, форму и состояние поверхностного слоя которых трудно получить механическими методами. К таким проблемам относится обработка весьма прочных, очень вязких, хрупких и неметаллических материалов, тонкостенных нежестких деталей, пазов и отверстий, имеющих размеры в несколько микрометров, поверхностей деталей с малой шероховатостью или малой толщиной дефектного поверхностного слоя. Подобные проблемы решаются применением электрофизических и электрохимических (ЭФЭХ) методов обработки, условная классификация которых дана на рис. 6.1. Для осуществления размерной обработки заготовок ЭФЭХ методами используют электрическую, химическую, звуковую, световую, лучевую и другие виды энергии.  [c.400]

Конструктор должен хорошо знать новейшие технологические процессы, в том числе физические, электрофизическне и электрохимические способы обработки (электроискровую, электронно-лучевую, лазерную, ультразвуковую, размерное электрохимическое травление, рб-работку взрывом, электрогидравлическим ударом, электромагнитным импульсом И т. я.). Иначе он будет стеснен а выборе рациональных форм деталей и ве сможет заложить в конструкцию условия производительного изготовления.  [c.71]

Д. М. Минцем и Я. Д. Раппопортом был предложен метод получения электрохимическим способом высококонцентрированных коагулирующих растворов путем анодного растворения в пластинчатых электролизерах обрезков железа или алюминия в водных растворах серной кислоты или поваренной соли. Это позволяет получать на месте потребления коагулирующие растворы с заранее заданными технологическими свойствами и затем дозировать их в обрабатываемую воду.  [c.221]

Использование разлитаых методов защиты от коррозии (технологические мероприятия, применение ингибиторов, защитных покрытий, электрохимической защиты).  [c.6]

ЭЛЕКТРОХИМИЧЕСКАЯ ЗАЩИТА ГОСТ 9.015 - 74. ЕСКЗС. Подземные сооружения. Общие технологические требования.  [c.143]

Технологические операции, применяемые в процессе изготовления изделия, могут существенно снизить начальную термодинамическую и электрохимическую устойчивость металла в связи с возникшей неоднородностью его структуры, из-за упругопластического состояния, изменения физических и других свойств. Например, для сварных соединений и конструкций определяющими являются теплофизическое и химико-металлургическое воздействие сварки. Как показали исследования д-ра техн. наук  [c.440]

Электротермия тесно переплетается с электрохимическими способами превращений веществ и материалов, что необычайно расширяет возможности электрификации технологических операций (например, э.тектролиз огненножидких расплавов, анодно-механическая обработка металлов и т. д.).  [c.117]

Сплавы ниобия. Методика коррозионных испытаний ниобиевых сплавов такая же, как и ванадиевых. Однако при испытаниях ниобиевых сплавов возникла следующая проблема. Не для всех сплавов вследствие определенных технологических трудностей было получено одинаковое структурное состояние. Так, нелегированный ниобий и сплавы Nb—Ti, Nb—Zr и Nb-Та исследовались в деформированном и рекристаллизованном (отожженом) состояниях, а сплавы Nb—Мо, Nb—W и Nb—V — в литом f отожженом состояниях. Однако полученные результаты коррозионны испытаний, несмотря на различие в структуре сплавов, сравнимы по еле дующим причинам. Коррозионная стойкость металлов и сплавов (гомогенных) определяется их электрохимическим потенциалом, который зависит от состава сплава и является структурно-нечувствительной характеристикой (т.е. не зависит от размера зерна, наличия текстуры и тд.).  [c.67]

Измерения методом изоляции составляющих (рис. 81) подтвердили отмеченную ми-кроэлектрохимическую гетерогенность поверхности после токарной обработки. Характерно, что последующим шлифованием ми-кроэлектрохимическая гетерогенность полностью не устраняется, т. е. наблюдается технологическая наследственность электрохимических свойств, обусловленная проникновением наклепа в глубину металла. Г/а ого nlT  [c.187]

Повышение скорости резания, уменьшая микроэлектрохими-ческую гетерогенность, может не обеспечить достаточно низкого уровня остаточных напряжений, при котором снизилась бы механическая активация металла. Очевидно, в условиях одновременного проявления этих противоположно действующих факторов оптимальное в электрохимическом отношении состояние поверхности может быть достигнуто при некоторой промежуточной скорости резания. Действительно, при режиме И1 разблагора-живание электродного потенциала оказалось незначительным. Этот режим оказался наиболее благоприятным и с технологической точки зрения, так как износ резцов был минимальным, а ми-кроэлектрохимическая гетерогенность была менее резко выражена.  [c.191]

Вместе с тем сопоставление различных режимов показало существенное влияние скорости резания режимы II и V имеют в максимуме близкие значения напряжений, но соответствующие сдвиги электродных потенциалов различаются более, чем в три раза. Это различие несколько затухает с увеличением расстояния от поверхности, что явно указывает на технологическую наследственность электрохимических свойств [151], обусловленных микроэлектрохимической гетерогенностью следа резца при более скоростном резании уменьшается электрохимическая гетерогенность, а, следовательно, снижается активность коррозионных микропар так, что поверхность в целом разблагораживается меньше.  [c.188]


Эффективность применения указанных технологических приемов для сглаживания электрохимической гетерогенности сварного соединения во многом зависит от способности основного металла и релаксации остаточных напряжений. В этом направлении представляются весьма перспективными малоуглеродистые стали мар-тенситного класса, обладающие высокой прочностью, пластичностью и ударной вязкостью, например, сталь 07ХЗГНМ (0,1% С 3,0% Сг 0,8—1,2% Ni 0,3—0,35% Мо). Малоуглеродистый мартенсит этой стали имеет тонкую субмикроструктуру, состоящую из пакетов параллельных пластин с высокой плотностью дислокаций, обеспечивающей высокие прочностные характеристики (о з = 1150 МПа, 00,2 = 900 МПа). Однако низкое содержание углерода (от 0,05 до 0,1%) обусловливает сохранение подвижности значительной доли дислокаций, образующихся в процессе у -> а-превращения, и облегчает релаксацию напряжений путем микропластических деформаций. Релаксации напряжений способствует высокая температура начала мартенситного превращения (480 °С и выше). Сталь имеет низкую критическую скорость закалки. Она закаливается с прокатного нагрева, сохраняя при этом высокие технологические свойства (б = 20%, =  [c.220]

Предыстория изготовления труб или технологическая наследственность , в первую очередь механическая и термическая обработка, во многом обусловливают коррозию под напряжением. Так, формование уиоминаемых выше разрушившихся спиральношовных труб без должной настройки формующих машин привело к созданию в металле остаточных напряжений до 125 МПа (табл. 4). Кроме того, формующие ролики оставили спиральные вмятины на поверхности с соответствующим наклепом и понижением коррозионной стойкости (наблюдались полосы избирательной механохимической коррозии). Остатки прокатной окалины также создают на поверхности коррозионные гальванопары, которые могут привести электрохимический потенциал локальных участков к значениям, при которых возникают трещины. Механическая обработка поверхности (например, при зачистке поверхности трубы скребками) создает неоднородность физико-механического состояния поверхностного слоя и вызывает сильную электрохимическую гетерогенность поверхности, способствующую развитию значительной локальной коррозии. Большое влияние формы и количества неметаллических включений, т. е. степени загрязнения стали, на коррозионную усталость (снижение выносливости) также обусловлено электрохимической гетерогенностью в области включения, усиливающейся при приложении нагрузки вследствие концентрации напряжений. В этом отношении является неудовлетворительным качество стали 17Г2СФ непрерывной разливки в связи с большой загрязненностью неметаллическими включениями (в частности пластичными силикатами), что привело к почти полной потере пластичности листа в направлении поперек прокатки.  [c.229]

Точно так же степень замасливания, допустимая при фосфати-ровании, совершенно неприемлема при нанесении электрохимических покрытий. Поэтому, решающими являются результаты определения эффективности, при которой достигается степень чистоты поверхности, достаточная для дальнейшей обработки. Речь идет об оптимизации процесса очистки для данного технологического процесса. Например, адгезия органических покрытий к шлифованной поверхности, загрязненной минеральным маслом и обезжиренной толуолом, составляет 4,0 МПа, трихлорэтиленом — 7,6 МПа, метилэтиленгликолем— 11,3 МПа.  [c.71]

К 1985 г. тотребление электроэнергии в промышленности предусматривается на уровне 795—800 млрд. кВт-ч с приростом к 1980 г. около 110 млрд. кВт-ч, или 16%. что связано как с ростом промышленной продукции, так и виедрением прогрессивных технологических процессов, классических, а также новых электрофизических и электрохимических технологий плазмосикте-за, вакуумно-дугового переплава, электронно-лучевой обработки и др.  [c.50]

На Подольском машиностроительном заводе имени Орджоникидзе (ЗиО) созданы специализированные цехи и участки по выпуску сепараторов-пароперегревателей, парогенераторов и теплообменного оборудования для реакторных установок ВВЭР-440 и ВВЭР-1000 (рис. 10.2). Значительно расширена область применения яеразрушающих методов контроля и новых технологических процессов организовано сверление глубоких отверстий в коллекторах и трубных досках на специальных многошпиндельных станках по заданной программе и изготовление дистанционных решеток на электрохимических станках, что исключило брак по этим видам технологии и дало возможность увеличить производительность труда в 4—5 раз (рис. 10.3).  [c.242]

За годы, прошедшие со времени издания книги Комбинированные электрохимические покрытия и материалы [1]. появилось много новых сведений в области создания композиционных материалов и покрытий, получаемых с наложением и без наложения электрического тока ( наносное осаждение, 1механическнй, плазменный, детонационный и другие методы). В предлагаемой читателю книге изложены главным образом теоретические основы и обобщены практические результаты исследователЁских работ по композиционным электрохимическим покрытиям (КЭП), выполненных за последние 10—15 лет, включая работы автора с сотрудниками в Казанском химико-технологическом институте им. С. М. Кирова.  [c.5]

Сопротивление усталости основных силовых деталей двигателя можно повысить металлургическими, конструктивными, технологическими и эксплуатационными методами, причем технологические методы являются наиболее эффективными. Не все технологические методы обеспечения надежности еще использованы. Например, лопатки компрессора ГТД из титанового сплава ВТЗ-1 в состоянии поставки металлургической промышленностью первоначально имели сопротивление усталости около 25 кгс/мм . Технологическими методами (электрохимическая обработка, ви-броконтактное полирование и деформационное упрочнение и др.) удалось повысить сопротивление усталости примерно в 2 раза.  [c.3]

ЖС6К, ЭИ437Б, ВТ9 и ЭИ961. Серии образцов предварительно обрабатывали электрохимически для устранения влияния предшествующей черновой обработки резанием ( технологической наследственности), затем их шлифовали абразивной лентой или фетровым кругом или обрабатывали последовательно лентой и фетровым кругом и далее подвергали виброконтактному полированию. Так же была испытана на усталость серия образцов из сплава ВТ9 после фрезерования, шлифования абразивной лентой и виброконтактного полирования. Режимы обработки всех серий образцов и лопаток указаны в табл. 3.3.  [c.216]


Смотреть страницы где упоминается термин Технологический электрохимическое : [c.578]    [c.580]    [c.92]    [c.104]    [c.8]    [c.48]    [c.222]    [c.199]    [c.191]    [c.187]    [c.56]    [c.2]    [c.236]    [c.258]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.138 ]



ПОИСК



Глянцевание металлов Технологические поверхностей металлических электрохимическое

Методы и технологические процессы электрохимической обработки Смоленцев)

Примеры технологических процессов электрохимического полирования типовых деталей

Технологические особенности нанесения электрохимических металлопокрытий на алюминиевые сплавы

Электрохимическая обработка - Квалификация 276 Оборудование 293 - Параметры качества поверхности 285 Припуски и погрешности обработки 283 - Проектирование технологического процесса 284 - Технологические параметры процесса

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте