Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фактор выдержки

Прессование 7 — 677, 679 — Выдержка 7 — 682 — Пневматический способ 7 - -697 — Температурный фактор 7 — 679 --Фактор выдержки 7 — 679 —Фактор давления 7 — 679  [c.196]

Мы уже рассматривали изменения свойств стали в зависимости от температуры отпуска. Температура отпуска — наиболее существенный фактор, влияющий на свойства отпущенной стали. При отпуске протекают диффузионные процессы, поэтому выдержка на той или иной стадии способствует превращениям, происходящим при данных температурах.  [c.281]


Температура и давление прессования зависят от вида перерабатываемого материала, формы и размеров изготовляемой детали. Время выдержки под прессом зависит от скорости отверждения и толщины прессуемой детали. Для большинства реактопластов время выдержки выбирают из расчета 0,5—2 мин на 1 мм толщины стенки. Технологическое время может быть сокращено вследствие предварительного подогрева материала в специальных шкафах. Давление зависит от текучести пресс-материала, скорости отверждения, толщины прессуемых деталей и других факторов.  [c.430]

Эффективность цементации зависит от многих факторов режима цементации (температуры и времени выдержки), состава карбюризатора, состава стали, режима термической обработки после цементации.  [c.139]

В литературе опубликовано большое количество диаграмм рекристаллизации для наиболее широко используемых металлов и сплавов. Для некоторых важных сплавов и сталей, в основном конструкционного назначения, построено по несколько диаграмм для разных условий деформации и нагрева, разного исходного, структурного и фазового состояния и т. д. Связано это с тем, что указанные факторы существенно влияют на характер структуры после рекристаллизации и потому при построении диаграмм рекристаллизации все факторы (кроме степени деформации и температуры отжига), влияющие на величину зерна, должны во всех образцах, по которым строится диаграмма, сохраняться постоянными и сведения о них должны быть приложены к диаграмме. К этим сведениям относятся химический состав и фазовое состояние сплава, для высоко чистых металлов — степень чистоты и содержание примесей, исходная величина зерна и текстура, схема и скорость деформации скорость нагрева и охлаждения, продолжительность изотермической выдержки и т. д.  [c.357]

Из анализа уравнения можно установить, что при выбранных интервалах варьирования из всех рассмотренных факторов на предел прочности сплава наибольшее влияние оказывают давление прессования ( б), время выдержки расплава в матрице до приложения давления ( з) и взаимодействие двух факторов — (времени выдержки расплава в матрице до приложения давления и конфигурации отливки). Влиянием остальных параметров можно пренебречь, учитывая дальнейшее сужение интервалов варьирования.  [c.146]

Даже при кратковременных высокотемпературных испытаниях в недостаточно чистом аргоне или при некачественном вакууме такие факторы, как продолжительность нагрева, длительность выдержки в нагретом состоянии, скорость испытания, существенно влияют на глубину насыщения молибдена газами и на механические свойства.  [c.125]


Термическая обработка титановых сплавов может очень сильно влиять на склонность к коррозионному растрескиванию, при этом изменяются и и скорость распространения трещины. Важнейшие факторы здесь температура нагрева, время выдержки и особенно скорость охлаждения. Наиболее благоприятная термическая обработка всех титановых сплавов, повышающая их стойкость к коррозионному растрескиванию,—нагрев до температуры, близкой к (а + ) переходу, небольшая выдержка при этих температурах и быстрое охлаждение, при этом решающим фактором режима обработки является скорость охлаждения. Наоборот, длительные отжиги при средних и низких температурах и особенно с медленным охлаждением сильно увеличивают склонность сплавов к коррозионному растрескиванию. Естественно, что влияние термической обработки на сплавы различных классов неодинаково [36]. Сплавы а и псевдо-а-сплавы, если в них не более 6 % алюминия и нормированное содержание газовых примесей (Оа, М, На), ускоренным охлаждением от температур, близких к (о + /3) /3-переходу, можно перевести в разряд практически не чувствительных к растрескиванию в галогенидах. Термическая обработка (а + ) сплавов, легированных -изоморфными элементами, в меньшей степени влияет на их чувствительность к коррозионной среде, чем термообработка а-сплавов. Влияние термообработки на коррозионное растрескивание стабильных /3-сплавов мало изучено, но при этом общие закономерности сохраняются.  [c.40]

Титану и его сплавам свойственна высокая химическая активность. Поэтому на их поверхности при выдержке на воздухе или в любой другой среде, содержащей свободный кислород, очень быстро образуется тонкая бездефектная оксидная пленка, прочно связанная с основным металлом. Оксид, образующийся на ювенильной поверхности титана на воздухе или в коррозионной среде, был идентифицирован как тетрагональная модификация диоксида титана —рутил. Толщина пленки оксида образовавшегося при 20°С на воздухе или в среде, как правило, находится в пределах 0,40-0,60 нм. До тех пор, пока пленка имеет малую толщину, она прочно связана с матрицей и не имеет дефектов на границе оксид—металл, вследствие чего она сохраняет достаточно высокую пластичность и деформируется вместе с металлом. В местах сильной локализации пластической деформации, где происходит разрыв пленки, практически мгновенно образуется новая защитная пленка тоже без дефектов на границе оксид—металл. Это происходит при отсутствии тормозящих факторов.  [c.59]

Представленные соотношения указывают на возможность введения соответствующих безразмерных поправок в качестве характеристик влияния выдержки под нагрузкой на скорость роста усталостной трещины. Запись (7.17) подобна записи (7.15) и отличается принципиально добавкой функции взаимодействия двух рассматриваемых факторов внешнего воздействия.  [c.357]

Варьирование формы цикла нагружения активизирует процессы разрушения жаропрочных сплавов, но и может вызывать пластическое затупление вершины трещины. С возрастанием длительности выдержки пластическое затупление может доминировать, что и вызывает снижение скорости роста трещины. В общем случае процессы повреждения материала в цикле нагружения могут быть описаны с помощью модели (рис. 7.13), предложенной в работе [54]. Как следует из этой модели, выдержка под нагрузкой, как и форма цикла, влияет на активизацию процессов ползучести, которые служат ускоряющим фактором в развитии усталостной трещины и могут быть охарактеризованы, например, так, как это представлено в соотношении (7.17).  [c.358]

В пользу того, что выдержка является инструментом , позволяющим выявлять ослабленное состояние границ фаз материала, а не фактором, вызывающим это состояние, свидетельствует то.  [c.373]

Развитие усталостных трещин в алюминиевых элементах авиационных конструкций в условиях агрессивного воздействия окружающей среды происходит по границам зерен и смешанно — по телу и по границам зерен [42, 133-138]. Снижение частоты нагружения, добавление выдержки с постоянной нагрузкой, повышение асимметрии цикла (все факторы в целом и каждый в отдельности) вызывают увеличение скорости роста трещин. Однако это не означает, что во всех случаях утрачивается основной механизм развития усталостных трещин, присущий алюминиевым сплавам, связанный с формированием усталостных бороздок.  [c.389]


Попытки установить корреляцию между эксплуатационными характеристиками армированных пластиков и основными положениями химии поверхностных явлений оказались безуспешными. Адгезия красок, каучуков и герметиков к поверхности минеральных веществ и прочность стеклопластиков (особенно после выдержки в воде) очень слабо зависят от контактных углов смачивания, поверхностного натяжения адгезива, наличия непрочных пограничных слоев, морфологии и химии поверхности минеральных наполнителей и других важных факторов. Вполне вероятно, что при оценке адгезионных свойств по механическим характеристикам композитов могут использоваться отдельные параметры или их сочетания, которые оказываются несущественными при рассмотрении адгезии полимерных цепей на молекулярном уровне.  [c.182]

Важным фактором является и время выдержки при нагреве.  [c.69]

Влияние длительности выдержки в цикле на характер разрушения можно установить лишь в опытах, когда другие параметры (главным образом размах деформаций и температурный режим) остаются неизменными. Неясность в этом вопросе, по-видимому, объясняется несоблюдением указанного условия в большей части известных опытов. Для исключения влияния других факторов опыты проводили при изменении лишь длительности выдержки в цикле Тв.  [c.81]

В настоящее время эти сведения весьма противоречивы часто термоусталостному разрушению приписывают черты длительного статического (развитие трещин по границам, поверхностное растрескивание на небольшую глубину), однако выше были приведены примеры развития трещин по закономерностям механической усталости. Разрушение при термоусталости не может быть охарактеризовано однозначно как усталостное или статическое оно может быть тем или иным, либо смешанным в зависимости от величины и соотношения трех основных факторов максимальной температуры цикла, амплитуды деформации и длительности цикла (выдержки на максимальной температуре). Именно эти факторы определяют основные изменения в структуре материала, относящиеся к состоянию границ зерен, количеству и виду упрочняющих фаз и их изменению во времени, характеру дислокаций, их торможению на границах зерен, образованию вакансий и т. д.  [c.97]

Алюминий — борное волокно. Как уже было указано выше, основными технологическими параметрами, влияющими на свойства композиционных материалов, полученных методом диффузионной сварки под давлением, являются температура, давление и время выдержки. Одной из первых и наиболее подробных работ, посвященных исследованию влияния различного сочетания этих факторов и выбора оптимальных сочетаний, является работа 130]. Были опробованы режимы прессования 1) при низкой температуре, высоком давлении и длительной выдержке 2) при умеренной температуре, низком давлении и умеренной выдержке 3) при высокой температуре, высоком давлении и кратковременной выдержке. Исследования проводили на композиционных материалах с матрицами из трех алюминиевых сплавов — 6061 (0,4—0,8% Si 0,7% Fe 0,15—0,4% Си 0,25% Zn, 0,15% Мп 0,8—1,2% Mg 0,15%Ti 0,15—0,35% r), 2024 (0,5% Si 0,5% Fe 3,8—4,9% u 0,25% Zn 0,3—0,9% Mn 1,2—1,8% Mg 0,1% r) и 1145 [S5 99,45% Al 0,55% (Si + Fe) 0,05% u 0,05% Mn]. Свойства полученных по этим режимам образцов приведены в табл. 25.  [c.133]

Композиции титан — бериллиевая проволока пробовали получать при температурах от 590 до 870° С, давлениях от 420 до 5600 кгс/см и времени выдержки от 0,5 до 10 ч. Основной трудностью изготовления этих композиций являлось то, что при технологических температурах бериллий более пластичен, чем титан, и в процессе изготовления материала из чередующихся слоев бериллиевой проволоки и титановой фольги бериллиевая проволока деформируется. Кроме того, имеет место химическое взаимодействие титановой матрицы с бериллиевым упрочнителем. Оба эти фактора приводят к снижению прочности бериллиевой проволоки, поэтому были предприняты попытки обеспечить равномерное всестороннее давление на каждую проволоку в результате укладки проволоки в канавки, полученные в титановой фольге методом травления. Однако получить канавки с идеальной геометрией не удалось, и деформация проволоки наблюдалась и в этом случае. Уменьшение величины взаимодействия достигалось в результате снижения температуры прессования и уменьшения времени выдержки. Композиционный материал с наиболее высокими свойствами был получен в результате совместной на-  [c.142]

Испытания образцов очень четко показали, что образование гидридов является функцией длительности выдержки в атмосфере водорода, давления, температуры и газового потока. Сочетания этих факторов вместе с дуговой сваркой вольфрамовым электродом создают условия для образования гидридов и начала процесса растрескивания.  [c.298]

Практически, и это оказывается не совсем 11ло о, так как имеется пауза — интервал времени от конца деформации до начала закалочного охлаждения, во время которой происходит рекристаллизация аустенита. Оптимальные результаты достигаются тогда, когда пауза достаточна, чтобы полностью протекала первая стадия ])екристаллизации, т. е. наклеп был бы снят и образовались мелкие рекристаллизован-ные зерна аустенита. Выдержка (пауза) сверх той, которая необходима для завершения пер-внчнон рекристаллизации приводит к росту зерна и ухудшению свойств. Очевидно, продолжительность паузы зависит от состава стали, температуры, степени деформации и других факторов. Поскольку при таком варианте ВТМО упрочняющего металл наклепа не создается, то и обычного упрочнения (повышения  [c.283]

Спекание проводят для повышения прочности предварительно полученных заготовок прессованием или прокаткой. В спрессованных заготовках доля контакта, между отдельными частицами очень мала и спекание сопровождается ростом контактов между отдельными частицами порошка. Это является следствием протекания в спекаемом теле при нагреве следуюш,их процессов восстановления поверхностных оксидов, диффузии, рекристаллизации и др. Протекание этих процессов зависит от температуры и времени спекания, среды, в которой осуществляется спекание и других факторов. При спекании изменяются линейные размеры заготовки (больн1ей частью наблюдается усадка — уменьшение размеров) и физикомеханические свойства спеченных материалов. Температура спекания обычно составляет 0,6—0,9 температуры плавления порошка однокомпонентной системы или ниже температуры плавления основного материала для композиций, в состав которых входят несколько компонентов. Время выдержки после достижения температуры спекания по всему сечению составляет 30—90 мин. Увеличение времени и температуры спекания до определенных значений способствует увеличению прочности и плотности в результате активизации процесса образования контактных поверхностей. Превышение указанных технологических параметров может привести к снижению прочности в результате роста зерен кристаллизации.  [c.424]


Скорость водородной коррозии в значительной степени зависит от глубины обезуглероживания стали. Глубина обезуглероживания, в свою очередь, зависит от многих факторов и, в частности,, от давления водорода, температуры, толщины металла, времени выдержки и др. На рис. 116 и 117 ириве,дены данные по обезуглероживанию стали. 35 при различных. давлениях и тем-п( ратурах. Общее для все.х полученных кривых — это наличие какого-10 инкубационного периода, во время которого обезуглероживание стали не наблюдается или оно незначительно. Продолжительность этого периода зависит от температуры и давления водорода.  [c.150]

Основными факторами, определяющими глубину и концентрацию цианированного слоя, являются температура нагрева и время выдержки. Чем выше температура, тем в поверхностном слое меньше N и больше С, и чем продолжительнее время выдержки, тем глубже циани-рованный слой.  [c.147]

Радиационные характеристики смеси продуктов деления являются исходными параметрами для расчета защиты, тепло-съема и собственно ведения технологического процесса. Они зависят в основном от трех факторов удельной тепловой мощности реактора хю вт/г (или плотности потока нейтронов Ф нейтрон1 см -сек) , продолжительности кампании Г и выдержки Для процессов переработки облученного топлива основными радиационными характеристиками смеси продуктов деления, которые в первую очередь необходимо знать при проектировании защиты, являются удельные активности  [c.183]

На свойства металла больщое влияние оказывает размер зерен, получившихся при рекристатлизации. Основными факторами, определяющими величину зерен металла при регистрации, являются температура, продолжительность выдержки при нагреве и степень производительной пластической деформации (рис. 23).  [c.29]

В. И. Курочкиным в программу исследования были включены не три, а семь факторов, варьируемых на различных уровнях. Исследования проводились на отливках типа стакана с различной глубиной центральной полости (0—65 мм), изготовляемых из сплава АЛЗ. Изучалось влияние температуры прессформы (Xi) в пределах 200—300° С, температуры заливки (Ха) в интервале 690—730° С, времени выдержки расплава в матрице до приложения давления (Хз) от 10 до 40 с, времени прессования (Х4) в пределах 30—40 с, скорости внедрения прессующего пуансона при формировании отливки (Xs) в пределах 0,03—0,05 м/с, давления прессования (А б) в интервале 25—100 МН/м и конфигурации заготовки (Х7), определяемой глубиной центральной полости в указанных выше пределах. В качестве параметра оптимизации (у) был выбран предел прочности сплава при растяжении.  [c.145]

Выдержка материала под нагрузкой при достижении порогового коэффициента интенсивности напряжения меняет ситуацию в вершине трещины в связи с проявлением материалом чувствительности к характеру его нагружения. Зона пластической деформации при выдержке перестает быть тормозящим фактором в процессе сохранения неизменным зфовня внешней нагрузки. Происходит медленное подрастание трещины при смешанном внутри- и межзереином скольжении (см. рис. 10.76, в), причем процесс внутризеренного  [c.546]

Другой подход к проблеме растворимости был использован Брентналлом и др. [7] при исследовании системы ниобий — вольфрам. Максимальное количество вольфрама, которое может быть введено в обычные ниобиевые сплавы, ограничено 20—30% из-за снижения ковкости сплава. Композитный материал из ниобиевой матрицы с вольфрамовой проволокой теряет стабильность вследствие растворения проволоки. Однако продукты растворения представляют собой высокопрочные сплавы системы Nb — W, которые обычно являются нековкими. Образование этих сплавов компенсирует потерю прочности, вызванную растворением вольфрамовой проволоки. На рис. 4 показано влияние выдержки (до 100 ч) при 1477 К на прочность при растяжении Nb-сплава с 24 об.% проволоки (W с добавкой 37о Re). Имеются два фактора, снижающие прочность. Первый из них — это уменьшение сечения вольфрамовой проволоки из-за растворения, второй— возврат, приводящий к разупрочнению. Прочность проволоки уменьшается с 119 кГ/мм в исходном состоянии до 77 кГ/мм после выдержки 100 ч при 1477 К. В то же время прочность композита не изменяется. Предполагается, что постоянная величина прочности композита обеспечивается образованием высокопрочных Nb — W-спла-вов. На рис. 5 сопоставлены микроструктуры вблизи места разрушения при испытании на растяжение образцов в исходном состоянии и после ЮО-часовой выдержки при 1477 К. Матрица становится менее пластичной после отжига из-за большого количества растворившегося в ней вольфрама.  [c.94]

В результате экопервмента, лри котором время выдержки в ап претирующем растворе колебалось от 30 с до 48 ч, установлено, что в течение 30 с происходит быстрая адсорбция аппрета, а затем процесс резко замедляется. Следует отметить, что после выдержки в течение 1 мин количество адсорбированного вещества для каждой концентрации раствора не является результатом временного адсорбционно-десорбционного равновесия между раствором и субстратом, а скорее связано с изменением природы необратимо хемосорбированной пленки в процессе ее образования либо с влиянием других факторов, зависящих от концентрации аппретирующей добавки в растворе.  [c.123]

Выше были рассмотрены закономерности малоциклового деформирования в условиях нормальных, повышенных и высоких температур (см. 2.1—2.3). Несмотря на существенное усложнение явлений по мере повышения температур испытаний, усиление фактора частоты и времени деформирования, проявление аффектов температурной выдержки под нагрузкой и без, во всех случаях доказано существование обобщенной диаграммы циклического деформирования. При нормальных и повышенных температурах обобщенная диаграмма отражает поцикловую трансформацию свойств материалов, выражающуюся в циклическом упрочнении, разупрочнении и стабилизации при наличии или отсутствии циклической анзиотропии.  [c.105]

Для снижения внутренних напряжений Применяют изотермическую обработку. Сущность этой обработки заключается в напреве деталей до обычной температуры закалки, выдержке при этой температуре в течение времени, необходимого для получения однородного твердого раствора, быстром переносе детали во вторую печь, подогретую до температуры изотермического превращения и выдержке при этой температуре до получения оптимальных механических свойств. Такая обработка не связана с резким охлаждением деталей, а поэтому не вызывает в них больших внутренних напряжений. Контроль влияния всех этих факторов по величине электрической проводимости возможен лишь после выяснения влияния тв р-мической обработки на электрическую проводимость при обычной закалке.  [c.77]

Отсутствие единой точки зрения на характер разрушения при термоусталости, затрудняющее анализ причин разрушения деталей, объясняется, по-видимому, некомплекеным исследованием роли основных трех факторов —1, Ае и Тц. Как показано выше, лишь сохранение неизменными двух из них позволяет выявить роль третьего (см. пп. 11, 12). При этом установлены некоторые общие признаки термоусталостного повреждения. Так, сочетание невысоких значений максимальной температуры цикла, малых амплитуд деформаций и отсутствие выдержки при максимальной температуре цикла обусловливают, как правило, усталостный тип разрушения, характеризуемый тонкими транс-кристаллитными трещинами со следами притертости, перпендикулярными действующим термическим напряжениям. Увеличение амплитуды нагрузки, введение в цикл выдержки при тах. особенно повышение температуры, изменяют характер разрушения вначале на смешанный, когда наблюдаются трещины и по зерну, и по границам, а затем разрушение устойчиво развивается по границам зерен, менее прочным в новых условиях нагружения и нагрева, чем материал тела зерен.  [c.98]


Установление закона циклической релаксации необходимо для расчета на прочность при термоциклическом нагружении с выдержками при максимальной температуре цикла. Развивающаяся в течение выдержки в цикле деформация ползучести ее и действующее в этот период напряжение являются основными факторами, определяющими степень накопленного за N циклов статического повреждения. Для случая жесткого нагружения материала с выдержкой при максимальной температуре Эд" мундс предлагает накопленное повреждение оценивать по вели-  [c.111]

В стали Х18Н10Т процесс карбидообразования протекает более интенсивно, чем в стали 0Х18Н10Ш. Это связано, по-видимому, с большим содержанием углерода и титана в стали Х18Н10Т. Фактор времени при старении деформированных сталей играет большую роль в начальном периоде процесса, а при длительных выдержках конечное количество вторичной фазы определяется главным образом не временем старения, а степенью предварительной деформации.  [c.66]

На рис. 143 представлены разрезы полученных временных зависимостей изменения электросопротивления при Т = onst. Как видно из рис. 143, увеличение времени выдержки при Т = onst и температуры испытания при Т = onst способствует сближению экспериментальных значений, полученных после различного числа циклов нагружения (т. е. оба фактора действуют в одном направлении), но при повьшении температуры до 700° С влияние времени становится более заметным.  [c.216]

Весьма наглядно представление кинетики некоторых из наблюдаемых явлений в координатах напряжение — температура. Графики в координатах Г — сг дают дополнительную возможность наглядно представить влияние па термонапряженное состояние основных факторов, обусловливающих заданное состояние образца-размер (длины стороны треуготьного сечения /), радиус закругления г, температура газа время выдержки при заданном ре-  [c.343]

При выполнении второго и третьего этапов оптимизации технологии деталей ГТД специфика, связанная с высокими эксплуатационными температурами, сказывается на выборе формы функции Д (Т) и программы технологических испытаний на усталость. Например, лопатки достаточно большого числа соседних ступеней часто выполняют одинаковый по содержанию технологический процесс, но имеют существенно отличающиеся резонансные частоты. Еще в большей степени это относится к аналогичным лопаткам разных ГТД или даже к модификациям одной Л1ашины. Образцы для всех аналогичных по конструкции и технологии лопаток ввиду их высокой трудоемкости изготовления и чрезвычайно обширной программы технологических испытаний, необходимых для оптимизации, целесообразно принять одинаковыми. Сами испытания на усталость желательно вести на одной частоте циклов, используя верхнее значение из диапазона частот рассматриваемых лопаток или даже форсированное значение частоты /ф для снижения па порядок сроков разработки нового технологического процесса. При этом по крайней мере для части лопаток сокращается время пребывания образцов для испытания на усталость при высоких эксплуатационных температурах. Чтобы компенсировать влияние данного фактора, перед испытаниями на усталость или в его прерывах можно выполнять операции нагрева и выдержки деталей в печи при эксплуатационных темпера-турах  [c.396]

Значительно легче осуществляется процесс формообразования боралюминия с перекрестным расположением волокон, если ось изгиба не перпендикулярна к одному из направлений волокон. Наличие пластичной матрицы, обеспечивающей деформацию скольжением, использование металлических прокладок для смещения нейтральной оси позволяют достичь критического радиуса до пяти толщин деформируемого материала. Основными факторами, определяющими величину критического радиуса, являются температура формообразования (450° С и выше) [222], время выдержки под давлением и скорость охлаждения. Последние два фактора определяют величину угла нружинения материала.  [c.200]

Б. Икин. Изменялось ли время выдержки образца из нержавеющей стали 303 при температурах, отвечающих критическому интервалу, с тем, чтобы оценить влияние этого фактора на результаты  [c.383]


Смотреть страницы где упоминается термин Фактор выдержки : [c.341]    [c.132]    [c.180]    [c.119]    [c.340]    [c.357]    [c.359]    [c.372]    [c.380]    [c.75]    [c.100]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.679 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте