Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водяные Выход

Газотурбинный двигатель расходует за один час 9 кг жидкого нормального октана. Предполагая полное сгорание со стехиометрическим количеством воздуха до двуокиси углерода, водяного пара и азота при адиабатных условиях, определить максимальную мощность (а. с.1ч). Воздух и топливо поступают прв 25 °С, выхлопные газы выходят с температурой 1000 °С.  [c.68]

При прямотоке обнаружено оптимальное значение расхода насадки ( 850 /сг/ч), при котором полезная теплопроизводительность (т. е. количество тепла, переданного воздуху) достигает максимума. При этом оптимальное отношение водяных эквивалентов в верхней камере W Wt = 2, а в нижней Наличие оптимума, очевидно, и объясняется появлением при больших расходах насадки обратного теплообмена, приводящего к снижению температуры воздуха на выходе.  [c.381]


Рис. 4.11. Водяной кипятильник из нержавеющей стали. 1 — конденсатор 2 — вход охлаждающей воды 3 — выход охлаждающей воды . 4 — вода 5 — нагреватель б — огнеупорный кирпич. Рис. 4.11. <a href="/info/276361">Водяной кипятильник</a> из <a href="/info/51125">нержавеющей стали</a>. 1 — конденсатор 2 — вход охлаждающей воды 3 — выход охлаждающей воды . 4 — вода 5 — нагреватель б — огнеупорный кирпич.
При построении г5-диаграммы по оси ординат откла/ ывается энтальпия пара, а по оси абсцисс — энтропия. За начало координат принято состояние воды в тройной точке, где so = О, /о = 0. По данным таблиц водяного пара на диаграмму прежде всего наносят нижнюю и верхнюю пограничные кривые, сходящиеся в критической точке К. Нижняя пограничная кривая выходит из начала координат, так как в этой точке энтальпию и энтропию принимают равной нулю (рис. 11-9). Состояние воды изображается точками па соответствующих изобарах, которые практически сливаются с нижней пограничной кривой. Линии изобар в области влажного пара являются прямыми наклонными линиями, расходящимися веером от нижней пограничной кривой. В изобарном процессе  [c.186]

Пример 29-5. Дымовые газы содержат 15% углекислоты и 10% водяного пара. Температура газа при входе в канал Т г = 1400°К, при выходе Т г = 1100°К, температура поверхности газохода у входа газов Т ст = 900 К, у выхода = 700°К. Степень черноты поверхности канала = 0,85. Общее давление дымовых. газов равно 1 бар.  [c.482]

Недостаток конструкции водяной поток по выходе из крыльчатки раздваивается, образуя на последних участках улитки два спиральных вихря, что связано с увеличением гидравлических потерь.  [c.90]

С учетом разности влагосодержания расчетное расхождение по абсолютным эффектам охлаждения ЪТ должно было составлять 15,5 К даже при /, = 0,18 МПа. В опытах же это значение не превышало 10 К. На основании этого результата авторами был сделан вывод о том, что на выходе из соплового ввода закручивающего устройства водяные пары находятся в переохлажденном состоянии, таким образом, конденсация и льдообразование происходят за соплом в камере энергетического разделения.  [c.63]

Выше уже отмечалось, что противоточная схема является наиболее эффективной по сравнению с другими схемами. Критерием для оценки эффективности служит значение среднего температурного напора (34.4) в противоточной схеме она оказывается больше, чем в прямоточной. Следовательно, поверхность нагрева теплообменника с противоточной схемой движения жидкости будет меньше, чем с прямоточной. Значит, при прочих равных условиях он будет наиболее компактным, а затраты материала на его изготовление наименьшими. Кроме того, при осуществлении противотока можно получить более высокую конечную температуру для нагреваемой жидкости, чем при прямотоке tl может стать даже выше температуры греющей жидкости на выходе, что в прямоточной схеме невозможно. Однако существуют условия, при которых схема противотока теряет свои преимущества перед прямотоком и они обе оказываются равноценными. Вот эти условия значения водяных эквивалентов греющей и нагреваемой жидкостей резко различаются, т. е. либо либо, наоборот, средний температурный напор  [c.431]


Парциальное давление насыщенного водяного пара но влажном воздухе на выходе из охладителя (при О °С) находим по табл. 5 Приложения / = 610,8 Па.  [c.67]

В парогенераторе атомной электростанции вырабатывается 57 т/ч водяного пара при давлении 1,37 МПа и температуре 586 К- Первичным теплоносителем служит углекислый газ, поступающий в парогенератор с расходом 750 т/ч при температуре 613 К. Определить температуру углекислого газа на выходе из парогенератора, если температура питательной воды, поступающей в парогенератор, составляет 381 К-  [c.297]

За и 8-За соответственно. Кроме того, термопары ТХК, установленные на входе 10-За и выходе 9-За из парогенератора, контролируют состояние водяного пара, поступающего в конден-  [c.167]

Задача 9.2. Определить количество теплоты, отдаваемое уходящими газами котельной спиртового завода водяному экономайзеру (утилизатору), для получения горячей воды, если температура газов на входе в экономайзер 0 = 34О°С, температура газов на выходе из экономайзера 0 = 2ОО°С, теоретический объем газов Fr= 11,48 м /кг, теоретически необходимый объем воздуха И =10,62 м /кг, коэффициент избытка воздуха за экономайзером Оу=1,4, средняя объемная теплоемкость газов = = 1,415 кДж/(м К) и расчетный расход топлива одного котлоагрегата Вр = 0,2 кг/с. В котельной установлены три одинаковых котлоагрегата, работающих на малосернистом мазуте.  [c.222]

К параметрам машин относят общие и специфические параметры. К общим параметрам относят производительность, скорости рабочих движений выходных звеньев, мощность привода, коэффициент полезного действия, массу, габаритные размеры к специфическим — параметры, которые характерны для конкретного вида машин. Так, например, для грузоподъемных машин указывают высоту подъема груза, для водяных насосов — высоту подъема и глубину всасывания воды, для многоступенчатого компрессора для сжатия воздуха — давление воздуха на выходе каждой ступени. Очевидно, что для машин специального назначения могут быть указаны и другие параметры.  [c.10]

На современных атомных электрических станциях, в которых источником тепла служит ядерный реактор с водой под давлением, получают почти сухой насыщенный водяной пар. На этих электростанциях используются турбины насыщенного пара. Паросиловой цикл такой установки показан на рис. 4-17, но 1-2 выходит из точки 6.  [c.174]

Основные характеристики и классификация котлоагрегатов. Основными характеристиками котлоагрегатов являются паропроизводитель-ность (для водяных парогенераторов) или тепловая мощность (для теплогенераторов ВТ и парогенераторов ВТ, работающих на высокотемпературных теплоносителях), параметры теплоносителей на входе и выходе из котлоагрегата, температура подогрева воздуха, поступающего в топку,  [c.277]

Процесс образования капелек в паровом объеме определяется принятой схемой подвода пароводяной смеси из парообразующих труб в барабан. При подаче пара выше зеркаЛа испарения капельки в паровом объеме образуются в результате дробления влаги, поступающей с паром в барабан из парообразующих труб. При подводе пароводяной смеси под зеркало испарения, как это выполнено у большинства современных энергетических котлов, образование мелких капель происходит вследствие разрыва оболочек единичных пузырей при выходе их из водяного объема барабана.  [c.158]

При нагревании твердого топлива без доступа воздуха его органическая масса разлагается, в результате чего образуются газы, водяные и смоляные пары и углеродсодержащий остаток. Суммарное количество выделяющихся летучих веществ увеличивается с увеличением температуры и времени выдержки. Этот процесс в основном заканчивается при 700—800°С, поэтому по ГОСТ 6382—75 выход летучих V , в % на горючую массу, определяется путем прокаливания 1 г топлива в закрытом тигле при 850 10°С в течение 7 мин. Выход летучих является важнейшей характеристикой горючей массы топлива и уменьшается по мере увеличения его возраста. Чем больше выход летучих, т. е. чем больше топлива превращается при нагревании в горючий газ, тем проще зажечь это топливо и легче поддерживать устойчивое горение. Органическая часть древесины и горючих сланцев при нагревании без доступа воздуха почти целиком переходит в летучие вещества (1/ =85-ь90%), в то вре-132  [c.132]


При нагревании твердого топлива без доступа воздуха его органическая масса разлагается, в результате чего образуются газы, водяные и смоляные пары и углеродсодержащий остаток. Суммарное количество выделяющихся л е-тучих веществ увеличивается с ростом температуры и времени выдержки, Этот процесс в основном заканчивается при 700—800 °С. По ГОСТ 6382— 80 (стандарт СЭВ 2033—79) выход летучих в процентах на сухое  [c.120]

В низкотемпературных процессах используются обычно вода и водяной пар. Эти теплоносители позволяют получать высокие коэффициенты теплоотдачи в теплообменных аппарата с, они дешевы и могут транспортироваться на значительные расстояния, теряя пэ пути относительно мало теплоты. Для экономичной работы всей системы теплэснаб-жения, объединяющей источник и потребитель теплоты, желателен сбор и возврат образующегося из пара конд нсата. Чистоту этого конденсата трудно сбеспе-чить. Так, конденсат, образующийся в подогревателях нефтепрогуктов и растворов красителей, часто в источник теплоты не возвращается, поскольку при выходе из строя нагревательных трубок теплообменника-подогревателя конденсат загрязняется и становится непригодным для питания котлов.  [c.191]

В водяных реакторах высокого давления атомных электростанций трубы теплообменников изготавливают в основном из отожженного инконеля 600. Теплоноситель реактора поступает в трубы при 315 С и выходит при температуре на 30—35 °С ниже. Вода, контактирующая с наружной поверхностью труб, проходит подготовку дистилляцией (минимум растворенных солей и кислорода, слабая щелочность создается с помощью NH3). Утоньшение и межкристаллитное КРН труб наблюдается на входных участках вблизи трубной доски в щелях и местах отложения шлама [И ]. Анализ смывов этих отложений показал, что они имеют щелочную реакцию и содержат большое количество натрия. На основании этих результатов для ускоренных испытаний на стойкость к КРН в условиях работы паровых установок сплав помещали в горячие растворы NaOH (290—365 °С). Выяснилось, что термическая обработка инконеля 600 при 650 °С в течение 4 ч или при 700 С в течение 16 ч и более значительно повышает его стойкость к КРН в растворах NaOH [9, 12, 13]. Попутно дости-  [c.364]

Первые попытки определения е. Первая попытка непосредственного определения величины элементарного заряда принадлежит ученику Томсона Д. Таунсенду. В 1897 г. он установил, что некоторые молекулы газа, выделяющиеся при электролизе с электродов, заряжены. Если пузырьки заряженного газа пропускать через воду, то при выходе его в воздух образуется устойчивое видимое облако. Полагая, что в насыщенном водяном паре каждый ион является центром конденсации и что число ионов равно числу капелек, Таунсеач определил электрический заряд в 1 см газа и число капелек воды, т. е. число ионов. Деление полного заряда на число ионов дает средний заряд одного иона. Метод основ111вался на большом числе предположений, что не позволило определить величину элементарного заряда со всей определенностью.  [c.102]

Первое подробное описание турбодетандера для воздухо-ожижительной установки было дано Капицей [181] (см. также [188]), который применил цикл низкого давления, кратко описанный в н. 33. Конструктивная схема установки Капицы дана на фиг. 70. Воздух, входяш ий через фильтр 1, сжимается двухступенчатым компрессором 2, имеющим производительность 9,5—10 м 1мин и рабочее давление 9 атм. Сжатый воздух проходит через водяной холодильник 3 и маслоотделитель 4 и иостунает в клапанную коробку -5 регенераторов 6. Регенераторы (более подробные данные о регенераторах см. в разделе 9) представляют собой две колонки с вакуумной изоляцией, заполненные насадкой из плоской металлической ленты шириной 50 мм и толщиной 0,1 мм с пупырышками . Система клапанов 5 на входе и 7 на выходе из регенераторов заставляет поток высокого давления попеременно (каждые 25—27 сек) проходить то через левый, то через правый регенератор. Воздух низкого давления также попеременно проходит через регенераторы в обратном направлении. Такое устройство заменяет обычный иро-тивоточный теплообменник п дает возможность перерабатывать воздух без предварительной очистки от содержащихся в нем парок воды и углекислоты, так как эти примеси осаждаются на насадке во время прохождения чере.ч регенератор воздуха высокого давления и уносятся затем во время прохождения обратного потока низкого давления но толгу же регенератору.  [c.88]

Парогазовый цикл представляет собой бинарный цикл, в котором используются два рабочих тела — продукты сгорания и водяной пар. В газовом цикле температура газов на входе в т фбину 900—1000 С, а на выходе 350 С и более. В паросиловых установ-  [c.177]

Газ-носитель из баллона высокого давления 1 через редуктор 2 л вентиль тонкой регулировки 3 поступает в осушительную трубку 4, заполненную прокаленным хлористым кальцием и молекулярными ситами с целью очистки от посторонних газов и паров. Затем, минуя манометр 5, газ-носитель проходит через подогреватель 9 в ячейку катарометра 8 и узел ввода пробы 7. Захватив пробу анализируемой смеси в виде пара или газа, которая вводится в колонку через резиновую мембрану узла ввода пробы, газ-носитель направляется в хроматографическую колонку 10. В колонке анализируемая смесь разделяется на составные компоненты. Колонка и детектор термостабилизируются воздушным или водяным термостатом 11. По выходе из колонки газ-носитель вместе с вымываемыми из нее компонентами поступает в измерительную ячейку катарометра, а далее через реометр 12 или другой измеритель скорости потока направляется в атмосферу. Результаты хроматографического анализа записываются с помощью регистратора 6.  [c.299]

В воздушных системах питающие и распределительные трубопроводы заполнены воздухом. Поэтому в начальный момент возникновения пожара из открывающегося отверстия диафрагмы спринклера выходит воздух, а затем поступает вода от водопитателя. Для обслуживания воздушной и воздушно-водяной системы устанавливают компрессор с подачей не менее 0, 5 м /мин.  [c.392]


В машинном отделении атомохода давление по водяному манометру 100 мм вод. ст. Барометр на палубе пс-казывает 750 мм рт. ст. Показание манометра на выходе и парогенератора 19 ат, показание вакуумметра конденсатор 640 мм рт. ст. (парогенератор и конденсатор расположены i машинном отделении). Определить давление (Па) в машинном отделений, на выходе из парогенератора и в конденсг торе.  [c.9]

Температуры теплоотдатчика и рабочего тела, например в паросиловых установках, существепно различны, так как ни свойства рабочего тела, ни свойства конструкционных материалов не позволяют довести температуру рабочего процесса до температуры продуктов сгорания топлива. Применение жаропрочных конструкционных материалов может несколько уменьшить эту разность температур такого же результата можно частично достичь при переходе на высокие давления рабочего тела в цикле (применительно к воде это будут закритические давления). Использование теплоты отходящих продуктов сгорания для подогрева топлива и предварительного подогрева рабочего тела дает возможность повысить эффективность применения выделяющейся при сгорании топлива теплоты. Перспективно (во всяком случае в паросиловых установках) использование горячих продуктов сгорания, после того как с их помощью завершен нагрев основного рабочего тела, в качестве вторичного рабочего тела в дополнительном цикле (как это осуществляется в парогазовых установках) нли применение бинарных циклов с использованием в верхнем цикле оптимального высокотемпературного рабочего тела. Можно также использовать в качестве головного звена энергетической установки МГД-генератор. В этом случае горячие газы вначале поступают в рабочий канал МГД-генератора, где кинетическая энергия потока преобразуется в электрическую энергию. На выходе из канала газы направляются в основную энергетическую установку, где отдают теплоту рабочему телу. Кроме использования МГД-генератора возможно создание термоэмиссиоиной надстройки . Целесообразным представляется также использование высоких температур продуктов сгорания для осуществления высокотемпературных химических реакций, в частности для получения водорода из водяного пара.  [c.516]

Конденсаторы монтируются в батареи в вертикальном положении. Конденсаторы КСЭ и КСЭК допускают также горизонтальную установку. Подсоединение производится к сборным шинам гибкими проводниками. Корпуса должны быть изол11рованы друг от друга. Особое внимание должно уделяться качеству водяного охлаждения, так как плохое охлаждение является основной причиной выхода конденсаторов из строя. Температура воды на входе не должна быть более 30 С. Желательна установка реле протока в каждой ветви охлаждения (не более трех конденсаторов последовательно). Масса конденсаторов не свыше 35 кг. Конденсаторы допускаютработу на переменной частоте, но без перегрузки по току и напряжению.  [c.172]

В конце волноводного тракта помещается поглощающая нагрузка, водяная или изготовленная из графито-цементной смеси. Нагрузка служит для поглощения энергии, не выделившейся в нагреваемом материале. Отражение энергии от конца волновода недопустимо, так как приводит к возникновению стоячей волны и, следовательно, нарушает равномерность нагрева. Кроме того, отраженная энергия нарушает режим работы генератора, может вы.з-нат1. перегрев магнетрона и выход его из строя.  [c.307]

На рис. 5.5 дана схема энергетического парогенератора среднего давления БМ-35-РФ, имеющего следующую характеристику па-ропроизводительность - 50 т/ч, давление перегретого пара - 3,93 МПа и его температура — 440 °С, температура питательной воды — 150 " С. Питательная вода поступает в водяной экономайзер / кипящего типа, откуда кипящая вода поступает в барабан 2. Из последнего по опускным трубам вода поступает в фронтовой экран 3, задний экран 4 и коллектор бокового экрана 5. Из фронтового и заднего экранов парожид-косгная смесь поступает в барабан 2, а из верхнего коллектора 6 бокового экрана в циклон 7, откуда отсепарированный насыщенный пар поступает в барабан 2, а жидкость самотеком возвращается в коллектор 5. Подъемные трубы заднего экрана разведены в фестон 8, за которым устанавливается пароперегреватель 9. Вход в него насыщенного пара н выход перегретого наглядно изображены на рис. 5.5.  [c.287]

В установках утилизации ВЭР вырабатываются водяной пар, горячая вода, электроэнергия, высокотемпературные теплоносители (ВОТ, соляные и др.), охлажденная вода, горячий воздух, механическая энергия для непосредственного привода машин. В зависимости от роли ВЭР в основном технологическом процессе, в котором они образуются, установки могут быть энерготехнологическими и утилизационными. К знерготехнологическим относятся установки, без которых не может протекать основной технологический процесс или режим претерпевает существенные изменения при выходе их из строя. К ним относятся системы принудительного охлаждения технологических агрегатов, охлаждающий теплоноситель которых, как, например ВОТ, используется в других процессах, утилизационные газовые турбины, а также котлы-утилизаторы для охлаждения продукционных потоков. К утилизационным относятся установки, без которых основной технологический процесс может протекать. К ним относятся котлы-утилизаторы запечных дымовых газов, утилизационные холодильные установки (АХУ и пароэжекторные) и расширительные машины, заменяющие процессы дросселирования промежуточных или основных продуктов, тепло- и парогенераторы для сжигания отходов химических производств.  [c.329]

Сущность его состоит в следующем. Водяной объем барабана котла и парообразующие циркуляционные контуры котла делят на несколько отсеков (ступеней) рис. 104, соединенных параллельно по пару и последовательно по воде. Питательная вода подается в первую ступень /, для второй ступени II питательной водой является продувочная вода первой ступени. Продувочная вода второй ступени II поступает в третью ступень III и т. д. Концентрация примесей в воде нарастает от ступени к ступени. Продувку котла проводят из последней ступени, в воде которой содержится максимальное количество примесей. Наибольшее распространение в современных котлах получили двух-и трехступенчатые схемы рис. 104. Вторая ступень II может быть организована внутри барабана, либо вне его — в выносных циклонах. В трехступенчатой схеме первую / и вторую II ступени выполняют в барабане /, а третью III — ъ циклоне 2. Во вторую и третью ступени испарения частично или полностью включают боковые экраны 3. При питательной воде с умеренным солесодер-жанием используют двухступенчатую схему испарения. При питательной воде низкого качества — трехступенчатую. Производительность каждой ступени испарения выбирают из условия обеспечения минимального соле- и кремнесодержания пара на выходе из барабана с использованием уравнений солевых балансов. Для схемы двухступенчатого испарения котлов высокого давления, когда общее солесодержание пара в основном определяется уносом кремневой кислоты, эти уравнения имеют вид  [c.157]

Гашение кинетической энергии струи пароводяной смеси и начальное разделение последней в барабане 1 котла среднего давления осуществляется с помощью отбойных щитков 2 (рис. 105, а), жалюзидроссельных стенок с горизонтальным расположением пластин и т. п., а в барабане котла высокого давления с помощью внутрибарабанных циклонов 6 (рис. 105, б). Равномерность распределения пара по сечению барабана и пароотводящим трубам обеспечивается применением уравнительных дроссельных щитов как в водяном объеме (погруженный щит 12 с отверстиями, рис. 105, в), так и в паровом объеме на выходе из барабана (пароприемный потолок 4, рис. 105, а, б).  [c.160]


Характерной особенностью врдо-водяных парогенераторов АЭС является наличие тепловой неравномерности объема. Появление ее связано с переменным температурным напором по длине труб теплообменной поверхности и неодинаковым расходом теплоносителя в трубах (ввиду различия сопротивления труб разной длины). Различие в тепловыделении приводит к неравномерности парообразования в пучке, а следовательно, к неравномерности скорости пара в отдельных частях парогенератора, повышению влажности пара. В конструкции парогенератора предусматривается ряд мер по борьбе с тепловой неравномерностью. Так, питательная вода, как более холодная по сравнению с внутрикор-пусной, подается через систему раздающих труб на более горячую часть теплообменного пучка. Этим достигается частичное выравнивание нагрузки по сечению парогенератора. Кроме того, для выравнивания скорости выхода пара по поверхности зеркала испарения под уровнем воды располагают дырчатый лист с опущенными вниз бортами высотой около 200 мм, с площадью отверстий, составляющей примерно 5 % площади листа. Такой лист создает определенное гидравлическое сопротивление, благодаря чему под ним образуется паровая подушка, перераспределяющая пар по зеркалу испарения.  [c.249]

Принцип действия зжекторной холодильной мащины может быть рассмотрен на примере пароэжекторной холодильной машины 17Э (рис. 8.25). Машина имеет холодопроизводительность 700 кВт при температуре воды 282 К на выходе из иепарителя 5. В парогенератор 1 подводится теплота Q,,, водяной пар (Тя 423=473 К р я 0,7 МПа) на-  [c.323]

Значения температур на входе и выходе из нагревательного прибора нормируются. Так, для водяного отопления в жилых и общественных зданиях Гвх = 368 К, Твых = 343 К. Так как теплоноситель по пути следования теряет часть теплоты и поступает в нагревательный прибор с более низкой температурой, то в зависимости от этажности здания, расположения прибора и типа отопительной системы расчетная поверхность нагрева увеличивается, для чего используются справочные данные (таблицы). Диаметры трубопроводов, обеспечивающие расход теплоносителя в зависимости от располагаемого или действующего давления, определяются на основе гидравлического расчета с введением в уравнения эмпирических коэффициентов, учитывающих ряд факторов.  [c.374]

Утечка воды из подшипника приводит к немедленному выходу его из строя. Это объясняется тем, что коэффициент сухого трения резины по стали в несколько раз выше, чем при водяной смазке теплопроводность вкладыша мала и его поверхность при нагреве начинает быстро плавиться. С целью предотвратить возможность аварии подачу воды контролируют, при прекращении подачи подключают резервный трз бопровод. Схема питания подшипника водой показана на рис. Vni.2. Обычр[о подача воды производится самотеком из спиральной камеры 1. По трубопроводу 2 через запорный клапан 3 и фильтр 4, предохраняющий от попаданий крупных засоряющих воду включений. Далее, через электромагнитный клапан 5 и струйное реле 6 вода поступает в ванну и оттуда в подшипник 7. При прекращении течения реле замыкает контакты и открывает электромагнитний клапан 9 на трубопроводе 10, предусмотренном для резервной подачи водь., подает сигнал о выходе из строя основной подачи и включает реле времени. Если вода из резервного трубопровода не поступает, струйное реле 6 остается замкнутым и реле времени по истечении установленного срока (2—3 с) замыкает контакты стоп-устройств регулятора и турбина аварийно останавливается. Если вода из резервного трубопровода поступает  [c.211]

Измерение температуры поверхности трубы производится шестью термопарами диаметром 0,25 мм. Спаи этих термопар припаиваются к полукольцам из медной фольги 2, а затем плотно прижимаются к наружной поверхности опытной трубы с помощью стеклянного шнура через тонкий слой слюды 3. Точность измерения температуры поверхностн указанным способом оценивается в 0,5 град. Температура потока измеряется на входе и выходе из опытной трубы с помощью термопар. Термопары устанавливаются в торцевых гильзах 14 и 15, которые тщательно центрируются. Перед выходной гильзой поток перемешивается с помощью смесителя 16. Вывод всех проводов из рабочего пространства опытной трубы наружу производится через специальные изолированные стальные кольца 12, сжатые между собой с помощью фланцев. Подводящий трубопровод имеет водяное охлаждение (на чертеже не показано). Давление измеряется образцовыми манометрами. Расчет коэффициента  [c.322]

Примеры компоновки блочных или выполненных в тяжелой обмуровке водяных экономайзеров системы ВТИ с котлами ДКВР 6,5-13 и 10-13, работающими на твердом или газообразном топливе, показаны на рис. 5-12. В компоновках с верхним выходом дымовых газов одинаковы высота и глубина колонки. Экономайзеры соединены с последним газоходом котла металлическим дз10дирййанным коробом. При скорости дымовых газов Б—В м/с значение коэффициента теплопередачи в экономайзере составляет 16—19 Вт/(м -К) или 14—16 ккалДм2-ч-°С). Скорость воды в трубах чугунного водяного экономайзера следует выбирать от 0,5 до 1,0 м/с. Гидравлическое сопротивление может быть найдено из выражения, Па или кгс/м  [c.192]


Смотреть страницы где упоминается термин Водяные Выход : [c.310]    [c.95]    [c.119]    [c.203]    [c.144]    [c.380]    [c.197]    [c.334]    [c.320]   
Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.258 , c.259 ]



ПОИСК



408—410, 420 — Выход

Водяной пар



© 2025 Mash-xxl.info Реклама на сайте