Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругая линия изотропного тела

В некоторой задаче имеется линия симметрии, если упругие свойства материала, геометрическая конфигурация границ и условия нагружения симметричны относительно этой линии. Упругие свойства однородного изотропного тела одинаковы во всех точках и по всем направлениям, поэтому остается только проследить за выполнением двух последних требований. Наличие линии симметрии влечет два физических следствия. Во-первых, на ней отсутствуют нормальные (по отношению к линии) смещения, и, во-вторых, вдоль нее отсутствуют касательные напряжения.  [c.73]


Г е р с е в а н о в Н. М. Общий метод решения упругого равновесия плоского изотропного тела и тонкой пластинки, ограниченных двумя кривыми линиями. Сборник института инженеров путей сообщения, Спб., 1910, вып. 76.  [c.108]

Изучение упругих волн в кристаллах, или, более точно, в монокристаллах, имеет фундаментальное значение для физики твердого тела и представляет собой основу многих современных научных направлений — квантовой акустики, акустоэлектроники, акусто-оптики и т. д. Если говорить о традиционных приложениях акустики твердого тела — ультразвуковых линиях задержки и фильтрах, то здесь использование монокристаллов позволяет существенно повысить рабочие частоты соответствующих устройств, так как затухание звука в этом случае значительно меньше, чем в изотропных телах, обычно представляющих собой поликристаллы.  [c.213]

Определение числа степеней свободы т деформируемого сплош-него тела связано с существенными затруднениями. В ферме это число легко определяется как количество возможных (и независимых) перемещений ее узлов (см. рис. 7.4). Нетрудно его определить и в некоторых других случаях. Например, однородный изотропный брус постоянного поперечного сечения при чистом изгибе от носительно оси симметрии сечения имеет только одну степень свободы соображения симметрии приводят к тому, что поперечные сечения должны оставаться плоскими (края не учитываются), а нейтральная ось независимо от характера деформации (упругая, пластическая) — совпадать с центральной. Обобщенным перемещением здесь служит кривизна. Брус при чистом косом изгибе, если сечение имеет не более одной оси симметрии, имеет три степени свободы (две кривизны и деформация осевой линии представляют три обобщенных перемещения). При поперечном изгибе брус имеет уже, строго говоря, бесконечное число степеней свободы для определе-, ния деформаций нужно задать кривизны и положения нейтральных осей во всех сечениях (сдвиг во внимание не принимается). Но для получения приближенного решения, более простого и в то же время  [c.161]

Пусть в упругом однородном и изотропном теле имеется хрупкая трещина форма тела и трещины совершенно произвольны. Предположим, что локальное разрушение в процессе развития трещины всегда происходит в плоскости, касающейся поверхности трещины в точке разрушения, так что результирующая поверхность трещины не имеет угловых линий и точек. В этом случае некоторое обобщение метода Гриффитса позволяет определить функцию f Кь Ки, Kill), фигурирующую в общем критерии локального разрушения (4.1).  [c.144]


В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

Проблема воздействия импульсных сил, распределенных вдоль линии, на анизотропное полупространство была рассмотрена для трансверсально изотропного упругого материала в работе Краута [88]. В частности, если поверхность полупространства нормальна к оси симметрии, линейный источник вызывает появление двух волновых поверхностей (рис. 22). Обобщение этого решения на случай соударения с упругим телом к настоящему времени не получено. Волны, образующиеся при сосредоточенном ударном нагружении изотропного полупространства, изучались Пекерисом [135 ], который показал, что большие поверхностные напряжения распространяются со скоростью поверхностных волн Релея. Однако решение динамической задачи об ударе упругой сферы по упругому полупространству до настоящего времени не известно.  [c.316]

В наших рассуждениях предполагалось, что напряжения (или экстранапряжения) в состоянии t определены формой материала в двух состояниях to, t простого сдвига. Следовательно, проведенное доказательство справедливо для любого изотропного идеально упругого твердого тела (определение его будет дано в главе 4). Нетрудно, однако, обобщить его на любой изотропный материал, напряжение которого или экстранапряжение в состоянии t определено заданием формы материала для произвольного числа состояний, связанных с состоянием t посредством простых сдвигов с общими сдвигающими плоскостями и общими линиями сдвига. Вся эта совокупность деформаций (история) в состоянии t будет обладать той же симметрией (по отношению к повороту на 180° вокруг оси вз), что и одиночный простой сдвиг to— t.  [c.91]

Ниже комнатной температуры модули и ц. изотропного твердого тела, а также С44 — одна из трех постоянных упругости анизотропных монокристаллов кубической сингонии, которая представляет собой один из двух модулей сдвига,— все зависят от температуры приблизительно линейно. Ультразвуковые исследования показали, что при значениях Т/Т , меньших чем 0,06, эти модули постоянны, т. е. они постоянны в области, расположенной слева от штриховых вертикальных линий на рис. 3.118 и 3.119 (Г — температура окружающей среды, а — температура плавления, обе в градусах Кельвина). В середине 60-х гг. я захотел определить значения модулей упругости при сдвиге при нулевых напряжениях для возможно максимального числа элементов с тем, чтобы сравнить их с квантованно распределенными значениями модуля упругости при сдвиге линейно упругих тел при нулевом значении напряжения, описываемыми зависимостью, в которой участвуют числа натурального ряда. Указанные квантованно распределенные дис-  [c.504]

Многочисленные применения в течение более чем 30 лет метода Уоррена — Авербаха [76—78] и вариантного метода Вильсона [80, 81] привели к огромному количеству рентгеновских экспериментальных данных. Однако интерпретация уширения рентгеновских линий этими методами была недостаточно эффективной. Получаемые при этом значения среднего размера областей когерентного рассеяния О и среднего квадрата деформации (е )у д трудно связываются с микроструктурой деформированных твердых тел, например, с плотностью и параметрами распределения дислокаций и дисклинаций. Возможности метода Уоррена — Авербаха были проверены при исследовании распределения интенсивности рассеянных рентгеновских лучей цилиндрическими кристаллами, на оси которых расположена одна дислокация, в нескольких ранних работах Вилькенса [82—85]. При этом вычислялись коэффициенты Фурье кривой распределения интенсивности на дебаеграм.ме для отражений вплоть до третьего порядка. Рассмотрение в [82] проводилось в приближении линейной изотропной теории упругости для винтовой дислокации. Обработка коэффициентов Фурье по методу Уоррена — Авербаха показала, что получаемый размер блоков отличается от размера Я блоков неискаженного цилиндрического кристалла. Это обусловлено тем, что функция распределения Рп п) деформаций решетки е , которые расположены на расстоянии па в пределах области когерентности, имеет длинные хвосты , не соответствующие нормальному закону распределения. Эти хвосты функции Рп (е ) вызваны большими деформациями решетки вблизи линии дислокации. Кроме того, среднеквадратичные деформации (е ), полученные усреднением е , которое соответствует винтовым дислокациям, заметно отличаются от (е )у д, найденных методом Уоррена — Авербаха. Так, при ( а// ) >0,1 различие получается почти в 2 раза, причем (е,г)Хе у д- При л-)-О (е5->  [c.232]


В классич. физике считалось, что кинетич. энергия тела может быть сделана сколь угоднр малой, в пределе — равной нулю, когда тело приведено в состояние покоя. В действительности, однако, в системе, части к-рой или вся она в целом имеют конечную неопределенность положения Д5, не равна нулю неопределенность импульса Л/) вдоль той же координаты д, а именно Ь.р UjKg. Поэтому среднее и вероятное значения импульса, а следовательно и кинетич. энергии, не равны нулю. Только в идеализированном случае вполне свободной частицы может быть сделано Ь.д =оо и Др = 0. В реальных же случаях всегда Др 0. Так, напр., частица, сдерживаемая вблизи положения равновесия изотропными квази-упругими силами, —осциллятор — в наинизшем энергетическом состоянии имеет энергию где Oq — характерная частота осциллятора (соо = если т — масса частицы, к — коэфф. в операторе потенциальной энзргии V — кг 12, г — отклонение от положения равновесия). Наличие нулевых колебаний обнаруживается в различных процессах. Например, колебания атомов кристалла вблизи положений равновесия приближенно описываются как колебания осциллятора. Характерное уширение линий рассеиваемого атомами света, вызываемое этими колебаниями, обнаруживается даже при наименьших возможных темп-рах. Сама же Н. э. играет роль аддитивной постоянной и может рассматриваться как нулевой уровень при отсчете энергии. Это возможно потому, что Н. э. не может быть никакими средствами отобрана у системы без нарушения ее связей и структуры и т. о. не участвует в энергетич. превращениях. По существу Н. э. является всякая энергия основного состояния квантовой системы.  [c.448]

Рассмотрим более подробно плоскую задачу (которая, как было ранее указано, имеет два варианта) для ортотропного тела. В случае плоской деформации мы имеем упругое полупространство, нагруженное усилиями, распределенными равномерно по бесконечной прямой на ограничивающей плоскости. Предполагается, что в каждой точке имеются три плоскости упругой симметрии, параллельные координатным, из которых одна параллельна ограничивающей плоскости линия, по которой распределена нагрузка (ось z), нормальна ко второй плоскости упругой симметрии. В случае обобщенного плоского напряженного состояния рассматривается полубесконечная ортотроп-ная пластинка, нагруженная по краю. В том и в другом случае область тела (на плоскости ху) есть полуплоскость. В соответствии с этим мы будем называть исследуемое тело упругой полуплоскостью , как это делается в случае изотропной среды (см., например, [26]).  [c.149]

Соотношения между изгибающим моментом и кривизной. В 90 мы нашли частное решение уравнений равновесия изотропного упругого тела, которое представляло деформацию пластинки, слегка изгибаемой парами, приложенными к ее краям. Чтобы этот результат выразить в обозначениях 294, поступим следующим образом на поверхности, в которую обратится средняя плоскость пластннки, проведем в какой-нибудь точке главные касательные (касательные к линиям кривизны). Обозначим через Sj, Sj направления этих прямых на недеформированной сречней плоскости, через радиусы кривизны нормальных сечений, проходящих через эти прямые, и через Gj, G —изгибающие моменты, относящиеся к плоским сечениям пластинки, которые нормальны к средней плоскости и прямым s,, s . Направление этих моментов определяется в согласии со сделанным в 2 4 условием таким образом, чтобы направления s,, 2, г были параллельны осям правой системы координат.  [c.483]

Будем считать твердое тело, на поверхности которого возбуждаются рэлеевские волны, однородным изотропным идеально упругим полупространством с плоской свободной границей. Размеры излучателей по оси у (рис. 5) будем предполагать бесконечными и будем считать, что действие излучателя рэлеевских волн на поверхность твердого тела экв ивалентно действию напряжений, приложенных к свободной поверхности твердого тела на том участке, где находится излучатель. При возбуждении кварцевыми пластинками J i- peзa (рис. 5, а) и У-среза (рис. 5, б) имеем соответственно нормальные и касательные напряжения единичной амплитуды, распределенные равномерно в 0 бласти поверхности при гребенчатой структуре (рис. 5, г)—периодическую совокупность единичных нормальных напряжений, в методе лина (рис. 5, в)—систему нормальных и касательных напряжений, приложенных к свободной поверхности твердого тела в области х а1соз = Ь, определяемой геометрическими границам и пучка продольных волн, распространяющихся в клине. Напряжения здесь будем считать равными напряжениям, возникающим при падении плоской продольной волны под углом 8 на границу двух полупространств, одно из которых состоит из материала клина, а второе — из материала твердого тела (продольная волна падает в первом полупространстве, а ее амплитуда предполагается такой, что нормальные напряжения на площадке, перпендикулярной напра влению ее распространения, равны единице).  [c.16]


Смотреть страницы где упоминается термин Упругая линия изотропного тела : [c.46]   
Механика сплошных сред Изд.2 (1954) -- [ c.648 ]



ПОИСК



Изотропность

Тело изотропное,

Упругая линия

Упругие тела



© 2025 Mash-xxl.info Реклама на сайте