Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Асинхронные элементы

Асинхронные модели обычно используют с двузначным или трехзначным представлением переменных. Трехзначное асинхронное моделирование позволяет учесть разбросы задержек распространения сигналов в элементах. Пусть в момент времени ti на вход элемента приходит сигнал, изменяющий состояние элемента с О на 1с задержкой ts, лежащей в интервале [ зтш, /этах]. Тогда в асинхронной модели элемента значение выходной переменной  [c.194]

С помощью асинхронных моделей можно проанализировать прохождение сигналов во времени в цифровой РЭА с учетом реальных задержек в элементах при различных последовательностях входных сигналов. Однако асинхронное  [c.194]


Наиболее общим направлением повышения эффективности математического обеспечения как синхронного, так и асинхронного моделирования является учет событийности. При анализе логических и функциональных схем событием называют изменение состояния любого элемента или, что то же самое, изменение значения любой переменной состояния. В процессе событийного моделирования вычисления производят только по уравнениям активных элементов, т. е. таких элементов, на входах которых на данном такте или итерации произошли события.  [c.253]

Прежде всего в качестве такой особенности следует отметить значительное количество и разнообразие параметров, характеризующих ЭМУ. Сюда относятся геометрические размеры конструктивных элементов, характеристики электротехнических, магнитных, изоляционных, конструкционных и других материалов, используемых в производстве ЭМУ, обмоточные данные, параметры источников питания. Их общее число, как показывает практика оптимизации таких объектов, в ряде случаев достигает 100—150 [7, 19]. При этом такие параметры, как геометрические размеры, являются непрерывными величинами, другие, например числа полюсов, зубцов, витков, — дискретными, что приводит к нарушению монотонности изменения функции цели и существенно затрудняет поиск ее экстремума. Для примера на рис. 5.13 приведены линии равного уровня времени разгона Гр, выбранного в качестве функции цели при оптимизации асинхронного электродвигателя, построенные с учетом (штриховые линии) и без учета (сплошные линии) дискретного изменения вдела витков в пространстве параметров - отношения наружного диаметра к диа-  [c.145]

Асинхронное моделирование - моделирование процессов в логических схемах с учетом задержек сигналов в логических элементах  [c.310]

Гиромоторы. Гиромотор является основным элементом любого гироскопического прибора. По характеру питания гиромоторы можно разделить на следующие типы электрические, пневматические, реактивные, пружинные, электромагнитные. Наибольшее распространение получили гироприборы с электрическим питанием. В качестве электрических гиромоторов наибольшее распространение получили трехфазные быстровращающиеся асинхронные двигатели с короткозамкнутым ротором. В некоторых системах специального назначения, где недопустимо присутствие магнитного поля, применяют гироприборы, в которых вращение ротора осуществляется при помощи воздуха или какого-либо иного газа.  [c.364]


В асинхронных электродвигателях упругие элементы создаются в продольных ребрах статора 1 за счет прорезей 2 в них (рис. VI. 11, а).  [c.263]

Рассмотрим эквивалентные схемы замещения этих систем. Механическая система, связанная с приводом, насоса, представлена на рис. 2. Скольжение асинхронного электродвигателя под нагрузкой (см. статическую-характеристику на рис. 3) учтено двумя элементами генератором скорости со и демпфером с , который соединяет его со всей остальной системой.  [c.44]

Схемы релейно-контакторного управления могут быть начерчены либо как совмещенные, либо как элементные (развернутые). В совмещенных схемах все элементы каждого аппарата или мащины на чертеже размещаются так, как они расположены в натуре. По принципу совмещенных схем чертятся монтажные схемы. Например, на фиг. 1 изображена монтажная схема управления асинхронным короткозамкнутым электродвигателем при помощи реверсивного магнитного пускателя и кнопочной станции. Даже и в этом простом случае совмещенная схема получается довольно запутанной.  [c.436]

Ряд контактных машин работает по принципу программирования, в частности при помощи индуктивных потенциометров, с использованием регуляторов времени для заданной длительности и последовательности включений операций сварочного цикла. Выполнены контактные машины с асинхронными контакторами. Разработаны системы регулирования режимов стыковой сварки оплавлением с обратной связью, по частоте пульсаций сварочного тока и скорости оплавления. Созданы цифровые системы управления контактными машинами на основе коммутаторных декатронов с записью программ на неподвижную перфокарту, что исключает применение подвижных элементов для считывания программ. Особенно большие успехи в повышении уровня автоматизации контактной сварки были достигнуты в ИЭС им. Е. О, Патона, ВНИИЭСО и на заводе Электрик .  [c.115]

Включение в силовые передачи таких элементов, как гидромуфты, нарушает синхронность работы, так как между ведущей и ведомой частями системы появляется скольжение, т. е. неравенство угловых скоростей. Такая параллельная работа называется асинхронной.  [c.458]

Асинхронные модели отражают не только логические функции, но и временные задержки в распространении сигналов. Асинхронная модель логического элемента имеет вид  [c.121]

Правильный выбор мощности электродвигателя имеет большое значение двигатель недостаточной мощности перегревается и преждевременно выходит из строя (перегрузка двигателя с хлопчатобумажной и шелковой изоляцией на 25 % сокращает его срок службы с 20 лет до нескольких месяцев, а перегрузка на 50 % приводит двигатель в негодность в течение нескольких часов) установка двигателя завышенной мощности экономически нецелесообразна и, кроме того, приводит к снижению его энергетических показателей (КПД и коэффициента мощности у асинхронных двигателей), может привести к повышенному износу и даже поломке элементов механизма.  [c.291]

В системах с ДМ могут использоваться линейные и нелинейные законы управления. Выбор закона управления обусловливается требованиями точности, предъявляемыми к СУС. При выборе закона управления необходимо также исходить из наличия технологически отработанных элементов СУС датчиков углового положения, устройств для привода маховиков и т. п. Так, использование ИКВ, имеющей сугубо нелинейную статическую характеристику, или применение в качестве привода маховика асинхронного электрического двигателя, заранее исключают возможность построения СУС с пропорциональным регулированием.  [c.50]

Исполнительные двигатели переменного тока. Эти двигатели выполняются асинхронными с короткозамкнутым ротором и двумя обмотками на статоре управления и возбуждения, сдвинутыми в пространстве на 90 электрических градусов. Обмотка возбуждения присоединена к сети переменного тока, а в обмотку управления подается управляющий сигнал. До подачи сигнала ротор неподвижен. С подачей сигнала должен возникнуть вращающий момент. Для этого обмотки возбуждения и управления сдвинуты по фазе. Сдвиг фазы достигается либо непосредственно в схеме, по которой работает двигатель, либо включением в цепь одной из обмоток (большей частью обмотки возбуждения) фазосдвигающего элемента.  [c.143]


Основной частью движущего механизма служит электродвигатель. Чаще всего для вращения диска используют асинхронные однофазные электродвигатели переменного тока или конденсаторные электродвигатели, реже синхронные электродвигатели. Все шире начинают применять прямой привод диска низкоскоростными электродвигателями с электронной стабилизацией частоты. В ЭПУ с автономным питанием используют коллекторные электродвигатели с электронной стабилизацией частоты вращения. Двигатели переменного тока питают от осветительной сети, чаще всего напряжением 220 В, двигатели постоянного тока питают от встроенных в ЭПУ гальванических источников постоянного тока— батарей. Однако частота сети при перегрузке сети уменьшается и отличается от 50 Гц. Поэтому в дорогих моделях ЭПУ двигатель питается от транзисторного генератора со стабильной частотой. Для изменения частоты вращения переключают элементы колебательного контура генератора. Плавную перестройку частоты вращения производят с помощью различных тормозящих устройств, например, изменяя расстояние между магнитом и вращающимся диском, в котором под действием  [c.240]

При решении некоторых задач разработчики заказных микросхем, иногда добавляют в свои схемы асинхронные элементы, полагаясь на относительную задержку распространения сигналов. Этот подход не работает по отношению к ПЛИС, так как разводка и связанные с ней задержки сигналов могут сильно изменяться после каждого нового прогона трассировщика.  [c.115]

Рассмотрим математические модели элементов на логическом подуровне. Для одновыходных комбинационных элементов ММ представляет собой выражение (в общем случае алгоритм), позволяющее по значениям входных переменных (значениям входов) в заданный момент времени t вычислить значение выходной переменной (значение выхода) в момент времени t + t , где ta — задержка сигнала в элементе. Такую модель элемента называют асинхронной. При (з = 0 модель элемента называют синхронной. Модель многовыходного элемента должна включать в себя алгоритм вычисления задержек и значений всех выходных сигналов.  [c.189]

Асинхронные модели схем составляют из асинхронных моделей элементов и применяют для анализа переходных процессов в цифровой РЭА. Время i в асинхронных моделях дискретизируется и измеряется в количестве тактов. Продолжительность такта достаточно малая — не должна превышать допустимую погрешность расчета временных параметров.  [c.194]

Методы решения логических уравнений. Анализ переходных процессов в логических схемах выполняют с помо-щь 0 асинхронных моделей (4.56), т. е. на основе асинхронного моделирования. К началу очередного такта ti известны значения векторов внутренних V/= U]<, V2i, Vni) и входных Ui переменных. Подставляя V и U,- в правую часть выражений (4.57), получаем новые значения которые примут внутренние переменные в моменты времени где ТА — внутренняя задержка распространения сигнала Vk в соответствующем элементе схемы. Далее переходим к следующему такту, в котором вычисления по (4.57) повторяются со значениями векторов V и U, соответствующими новому моменту времени (напомним, что время измеряется в количестве тактов). Асинхронное моделирование называют потактовым.  [c.250]

В качестве примера, поясняющего введенные понятия, рассмотрим управление процессом разгона асинхронного двигателя, которое можно осуществить, изменяя амплитуду и частоту питающего напряжения. Координатами состояния объекта являются частота вращения ротора, потребляемые токи, тепловое состояние элементов конструкции. На управляющие воздействия и координаты состояния накпадьшаются ограничения (например, амплитуда напряжения питания, потребляемые токи, температуры не должны превышать заданных пределов). Критерием оптимальности управления, выражаемым в общем случае функционалом вида (6.22), в рассматриваемом случае могут быть энергия, затрачиваемая на разгон двигателя  [c.222]

Современные гироскопические приборы и системы представляют собой сложные электромеханические устройства, в конструкциях которых используются высокооборотные синхронные и асинхронные двигатели, безмомент-ные индуктивные чувствительные элементы, электронные, транзисторные и магнитные преобразователи и усилители, прецизионные сельсинные и потенциометрические дистанционные передачи, редукторные и безредукторные сервоприводы, электромагнитные моментные датчики, прецизионные специальные шариковые подшипники и другие виды прецизионных подвесов (поплавковые, воздушные, электростатические, электромагнитные и др.) и т. д Приборы и системы, действие которых основано использовании свойств гироскопа, называются гироскопическими.  [c.6]

При работе гидродвигателя (силового гидроцилиндра или гидротурбины) обязательными элементами являются насос, приводимый в движение асинхронным электродвигателем, трубопроводы и управляющие устройства пневмодвигатели, как правило, питакй-ся сжатым воздухом из общей магистрали или от устройства (компрессора), расположенного за пределами машины-автомата.  [c.425]

При нагружении образца упругие элементы динамометра 1 и тензометра 3 деформируются, что вызывает разбалансы измерительных мостов. Сигналы разбаланса усиливаются и поступают на вход управляемых реверсионных асинхронных электродвигателей 12 и 13, которые размещены в пульте управления. Через соответствующий редуктор электродвигатель 12 приводит в движение стрелку циферблата 14 силоизмерителя и перо барабана 15 диаграммного аппарата. При этом перо с помощью нити перемещается вдоль образующей барабана, пропорционально действующей на образец силы. Одновременно электродвигатель 13, получающий сигнал от тензометра 3, через свой редуктор вращает барабан 15 вокруг его оси, вследствие чего перо прочерчивает по окружности барабана перпендикулярно к его образующей отрезок, пропорциональный продольной деформации образца. Таким образом, на бумаге, натянутой на барабан, получается кривая зависимости силы от деформации образца в соответствующем масштабе.  [c.260]


Одним из перспективных направлений было создание комплекса импульсных мостовых элементов и построение на их основе импульсных устройств и систем телемеханики асинхронного типа. Новым направлением является создание первой системы телеизмерения, самоприспосабливающейся к пото-ку передаваемой информации.  [c.262]

Принципиальная схема следящей системы представлена на рис. 2, где приняты следующие обозначения ее основных элементов 1 — задающая ось 2 — отрабатывающая ось 3—электронный усилитель 4 — двухфазный асинхронный исполнительный двигатель 5 — зубчатый редуктор. Нелинейную характеристику типа люфта (рис. 1) сосредоточим в кинематической цепи привода между редуктором и щеткой отрабатывающего потен-щиометра и будем. считать, что в условиях относительно малых входных сигналов можно ограничиться рассмотрением линейной части характеристики усилителя.  [c.137]

Анализируя характеристику (3.133), легко убедиться в том, что она соответствует динамической модели, при которой ротор соединен со статором посредством некоторого упругого элемента с коэффициентом жесткости Сд = (удйдТд) и последовательно включенного демпфера, вызывающего линейную диссипативную силу с коэффициентом пропорциональности Ьд = (vдQд) (см. рис. 18). При реальных соотношениях параметров для асинхронных двигателей и двигателей постоянного тока обычно  [c.136]

В данной отатье рассматривается параметрическая чувствительность в режиме торможения объекта, состоящего из двух рабочих секций, связанных участком главного вала. Параметрическая чувствительность объекта характеризует изменение значений крутящих моментов в элементах привода при одном изменяющаяся параметре машины и неизменных остальных. Изменяемыми параметрами машин являются, надфимер, моменты инерции рабочих органов и их угловые скорости в начале торможения, значения и характеристики тормозных моментов. В изолировочных машинах по условиям технологического процесса обмотчики могут вращаться с разными угловыми скоростями в уст Ковивпемся режиме. Их моменты инерции отличаются друг от друга вз-за неодинакового количества бумажных рулонов, установленных в каждой секции. Конструктивные особенности и техническое состояние тормозов приводят к асинхронному их включения, характеризуемому временем "запаздывания" Z (ряс, I). По  [c.78]

Стандартные асинхронные трёхфазние электродвигатели преимущественно с короткозамкнутым ротором применяются в двух исполнениях нормальном (на лапах) и фланцевом. Используются для обслуживания элементов подачи станка или перемещения его отдельных частей (сервомоторы), а также для привода ножевых головок. В первом случае обычно применяются электродвигатели с числом оборотов 1000—1500, во втором — 3000 в минуту. Соединение электродвигателей, обслуживающих подачу или иные механизмы станка, часто производится с помощью зубчатых передач. Для тон же цели применяются также ремённые передачи или соединения через эластичную, реже глухую муфту. Стандартные электродвигатели, обслу-М ивающие привод ножевых головок, присоединяются К рабочему шпинделю обычно при помощи муф ты или ремня. Тип защиты электродвигателя от внешней среды — закрытый или открыто-защищённый. Для мощных станков (лесорам, продольно-распиловочных для брёвен, двойных обрезных для досок) применяются также электродвигатели с фазовым ротором.  [c.770]

Установка выполнена по простому открытому циклу, с использованием тепла уходящих газов в котле-утилизаторе. Максимальная температура перед турбиной 675°С, степень повышения давления 4,0. При этих параметрах ГТУ развивает мощность 6000 кет, измеренную на клеммах генератора. В зависимости от использования тепла уходящих газов к. п. д. установки может достигать 60—70%. Параметры пара котла-утилизатора составляют 12 ama при температуре 235°С. Используется 20 Мкал/ч тепла при охлаждении продуктов сгорания на 150°С. Установка имеет одновальную линейную схему со следующей последовательностью отдельных элементов турбина, компрессор, электрический генератор и пусковой электродвигатель (рис. 5-7). Возбудитель генератора, приводимый асинхронным электродвигателем, представляет собой самостоятельный агрегат, расположенный в подвале машинного отделения.  [c.158]

С а д о в с к и й И. М. Асинхронный серводвигатель как элемент схемьг регулирования, Автоматика и телемеханика , 1952, № 6.  [c.491]

Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины. Бескол-лекторные синхронные (вентильные) двигатели для станков с ЧПУ изготовляют с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Асинхронные двигатели применяют реже, чем синхронные. Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования. Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.  [c.275]

Для управления с помощью сигналов логических элементов Логика Т трехфазными асинхронными электродвигателями с короткозамкнутым ротором мощностью до 40 кВт при питающем напряжении 220 или 380 В с частотой 50 и 60 Гц. Обеспечивают пуск, останов, реверс, динамическое и двухтоковэе торможение и режим противовключения двигателя. Выпускаются взамен релейно-контактных станций управления типа БУ-5000 и ПУ-5000.  [c.181]

В электрических схемах современных лифтов в настоящее время применяют два вида электронных устройств, это УВТЗ-1 (устройство встроенной температурной защиты) и временные элементы Логика И-300 . УВТЗ-1 используется для предотвращения перегрева и выхода из строя статорных обмоток асинхронных электродвигателей главного привода лифта, при наличии в обмотках терморезисторов (термодатчиков). Элементы Логика И-310,  [c.32]

На результаты испытаний технологических свойств СОЖ большое влияние оказывает правильный выбор элементов режима резания, главным образом скорости резания. Основные серии испытаний проводили на скорости резания, обеспечивающей при работе на товарных СОЖ среднюю стойкость инструментов, соответствующую минимальной себестоимости выполнения операции обработки резанием. Кроме того, для построения зависимостей стойкости инструментов от скорости резания и получения более обоснованного заключения испытания проводили при изменении скорости резания в 1,2—1,4 раза как в сторону увеличения, так и в сторону уменьшения. Подачи и глубины резания соответствовали уровню режима резания получистовых операций. На всех металлорежущих станках для установления и поддержания на одном уровне необходимых скоростей резания были смонтированы взамен асинхронных двигателей комплектные тиристорные приводы постоянного тока типа ПКВТ или ПТЗР, а также устройства для измерения частоты вращения шпинделя на базе электронного частотомера типа 43-32. Это обеспечило постоянство скорости резания с ошибкой не более 0,5%.  [c.91]


Такая система в литературе обычно называется системой путевого контроля, однако правильнее ее назвать рефлекторной, так как в отдельных узлах схем применяется автоматическое управление давлением, скоростью, факт11ческим размером обрабатываемого изделия и т. п., т. е. командный импульс может поступить не только от положения рабочих органов. Управление давлением применяется, например, в зажимных устройствах (при работе до жесткого упора) и в системах смазки. Элементом управления в этом случае является реле давления. Управление скоростью применяется при автоматизации процессов торможения асинхронных двигателей, для контроля вращения режущего инструмента и контроля снижения скорости при индексации (фиксированный останов стола, шпинделя). Управление осуществляется при помощи реле скорости.  [c.26]

Одним из характерных вариантов является система генерато р— двигатель (рис. П.З, а). Исполнительный электродвигатель 6 получает питание от генератора 3, который приводится во вращение асинхронным электродвигателем 2. Изменение числа оборотов электродвигателя осуществляется йзменением напряжения в цепи якоря или тока в обмотке возбуждения 7. Для изменения напряжения в цепи якоря изменяется ток в обмотке возбуждения 4 генератора 3. Для питания обмоток возбуждения используется либо специальный генератор (возбудитель) 1, получающий вращение от того же асинхронного электродвигателя 2, либо выпрямитель 8, питающийся от сети. Для поддержания стабильности работы электропривода генератор может иметь ряд дополнительных обмоток, получающих питание от тех или иных элементов системы, реагирующих на отклонение системы от заданного режима работы. Изменение напряжения на дополнительных обмотках поддерживает постоянство заданного режима. В частности, для поддержания постоянства заданного числа оборотов используется тахогенератор 5, связанный с исполнительным электродвигателем. При изменении числа оборотов электродвигателя 6 изменяется напряжение, подаваемое тахогенератором в обмот ки возбуждения генератора 3.  [c.192]


Смотреть страницы где упоминается термин Асинхронные элементы : [c.115]    [c.400]    [c.427]    [c.80]    [c.286]    [c.120]    [c.540]    [c.93]    [c.121]    [c.475]    [c.399]    [c.258]    [c.473]   
Смотреть главы в:

Проектирование на ПЛИС архитектура, средства и методы  -> Асинхронные элементы


Проектирование на ПЛИС архитектура, средства и методы (2007) -- [ c.115 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте