Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обобщенные криволинейные скорости

Можно также представить лагранжиан как функцию обобщенных криволинейных координат ч, - и их производных по времени t (обобщенных скоростей [c.16]

Таким образом, кинетическая энергия в криволинейных координатах выражается в виде полинома второй степени от обобщенных скоростей qi-  [c.456]

Производную по t от какой-либо криволинейной координаты q называют скоростью обобщенной. Если какой-либо угол, например, сферическая координата ф, изменяется во времени, то производная от этого угла по t называется иногда угловой скоростью.  [c.61]


Далее, рассмотренный метод дает возможность решать в некоторых случаях как для изотермического, так и для политропного газа задачи о движении криволинейных поршней, которые гонят перед собой ударную волну, в предположении достаточной гладкости в некотором смысле формы поршня для начального момента времени. Таким образом, можно получить некоторые обобщения решения Л.И. Седова о расширяющемся с постоянной скоростью цилиндрическом поршне [2] для криволинейных поршней. Эти вопросы будут рассмотрены в последующей статье. Полученные точные решения могут быть использованы, кроме того, как критерии точности некоторых численных методов.  [c.55]

В п. 1 настоящей статьи рассматриваются вопросы нахождения решений в области между криволинейной ударной волной и подпирающим ее криволинейным поршнем, давление вдоль которого постоянно во времени. Получено обобщение известного автомодельного решения Л.И. Седова задачи о расширении с постоянной скоростью цилиндрического поршня в газе [4].  [c.56]

Мы рассмотрели основные законы движения заряженных частиц в электрическом и магнитном полях. Сначала мы определили лагранжиан частиц (уравнение (2.15)). Закон сохранения энергии позволил представить скорость частицы в виде функции потенциала (уравнение (2.31)). Затем были получены релятивистские уравнения движения (2.50) — (2.52) в обобщенной ортогональной криволинейной системе координат. Были рассмотрены частные случаи уравнений движения в декартовой (уравнения (2.53) — (2.55) и цилиндрической (2.60)—(2.62) системах координат. Уравнения движения были затем преобразованы в траекторные уравнения (2.76) —(2.77), (2.80), (2.81) и (2.84) — (2.85) соответственно. Мы ввели релятивистский потенциал (уравнение (2.89)) и показали, что он позволяет использовать нерелятивистские уравнения в магнитных полях даже в случае высоких энергий частиц. Затем был введен электронно-оптический показатель преломления (соотношение (2.92)) и установлены аналогии между геометрической оптикой, с одной стороны, и электронной и ионной оптикой, — с другой. Были определены траектории частиц в однородных электростатическом и магнитном полях посредством точного решения траекторных уравнений. В качестве практических примеров рассмотрены плоские конденсаторы, длинные магнитные линзы, электростатические и магнитные отклоняющие системы, простые анализаторы масс и скоростей. Наконец, были приведены законы подобия электронной и ионной оптики (соотношения (2.183) — (2.188) и (2.190)).  [c.63]


Основы учения о движении вязкой жидкости были заложены в 1821 г. французским ученым Навье и получили свое завершение в 1845 г. в работах Стокса (1819—1903), который сформулировал закон линейной зависимости напряжений от скоростей деформаций, представляющий обобщение простейшего закона Ньютона, и дал в окончательной форме уравнения пространственного движения вязкой жидкости, получившие наименование уравнений Навье — Стокса. Используя специальные молекулярные гипотезы относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1821 г. Навье, в 1831 г. Пуассон (1781—1846) и в 1843 г. Сен-Венаи (1797—1866). Урав " нения Навье —Стокса в криволинейных координатах в 1873 г. вывел Д. К- Бобылев.  [c.26]

Лагранжева формулировка уравнений движения полезна для описания континуальных консервативных систем в той же мере, что и для систем сосредоточенных масс, в особенности для уравнений движения в криволинейных координатах. Для системы частиц с п степенями свободы уравнения Лагранжа представляют собой систему п обыкновенных дифференциальных уравнений, в которых время является независимой переменной. Функция Лагранжа в общем случае зависит от п обобщенных координат и от их производных по времени (обобщенных скоростей). Для континуальной консервативной системы, частным случаем которой является упругое тело, уравнения Лагранжа представляют собой систему дифференциальных уравнений в частных производных по времени и по трем пространственным координатам в большинстве случаев все три уравнения независимы. Функция Лагранжа в них зависит от обобщенных координат, обобщенных скоростей и от производных от обобщенных координат по пространственным переменным. Конкретная форма уравнений зависит от системы координат, к которой отнесены пространственные производные. Простейшая форма имеет место в том случае, когда применяется декартова система координат  [c.87]

Легко видеть, что оба уравнения имеют одинаковую аналитическую структуру, причем натяжению Т, направленному по касательной к кривой равновесия, в первом уравнении отвечает скоросты , направленная по касательной к траектории точки, во втором уравнении, силе Р, отнесенной к единице длины нити, уравнения (7.1) отвечает сила — Р/гп, отнесенная к единице массы точки, уравнения (7.2). Этой аналогией объясняется сходство между другими формами уравнений равновесия нити и уравнений движения материальной точки. Так, например, уравнениям равновесия нити в естественных осях, в обобщенных (криволинейных) координатах, в канонической форме Гамильтона отвечают соответствующие уравнения движения материальной точки. Можно привести ег другие формы уравнений равновесия нити, имеющие соответствующие аналоги в динамике, например уравнение в частных производных в форме Гамильтона — Остроградского (впервые оно было получено акад. В. Г. Ишменецким  [c.39]

Известно, что вектор grad F q-2, =0 — уравнение обтекаемой поверхности q, < 2, 93 —обобщенные криволинейные координаты] совпадает по направлению с нормалью к поверхности. Тогда при соблюдении условия безотрывного обтекания скалярное произведение этого вектора и вектора скорости V будет равно нулю. Следовательно, в математической форме условие безотрывного обтекания можно представить таким образом  [c.126]

От декартовых координат в уравнениях (185.63) можно иерейти к криволинейным координатам, если каждое из уравнений (185.63) умножить соответственно па dx-jdq, , dy.jdq , dz.Jdq , сложить их и преобразовать, используя леммы об обобщенных скоростях. В результате 1и0лучи м уравнения  [c.300]

Физ. механизмы волнообразования могут быть связаны либо с ускоренным, либо с равномерным движением излучающих объектов — тол, зарядов и т. д. К первому случаю относится, напр., излучение В, при колебат. движениях частиц, ударе барабанной палочки, pe iKOM торможении заряж. частицы, взрывном расширении газов и т, п. В электродинамике такое излучение наз, тормозным. При этом спектр частот излучения определяется спектром ф-ции источника. При пе-риодич., напр, синусоидальном поступательно-возвратном, движении возмущающего тела (осциллятора) с произвольной амплитудой оно излучает В. с частотами (О, 2(й,. .., кратными частоте своих колебаний со, т. е. на частоте колебаний тела и её гармониках. Естеств, обобщением этого механизма излучения является образование В. при движении тела или заряда по криволинейной траектории. Движение по кругу эквивалентно суперпозиции двух ортогональных прямолинейных осцилляторных движений, и наоборот, два круговых движения в противоположных направлениях могут быть эквивалентны одному прямолинейному осцилля-торному движению. В акустике подобным образом излучают винты двигателей, в электродинамике — частицы, вращающиеся в магн. поле (магн.-тормозное излучение). При равномерном движении объекта в однородной среде излучение возможно, только если он движется со скоростью, превышающей скорость. распространения В, в этой среде, т. е, при сверхволновом — сверхзвуковом, сверхсветовом и т. д, движении. Возмущение, создаваемое движущимся телом, как бы сдувается средой. Порождаемое при этом излучение сосредоточено в конусе с углом при вершине (в точке нахождения тела), равным а=агс os г ф/У, где Оф — фазовая скорость В., У — скорость тела. В среде без дисперсии этот конус (конус Маха) одинаков для всех частот,  [c.322]


Формула (12.1 ) встречается также в дифференциальной геометрии в теории параллельного переноса и ясно показывает различие между 8F/Si и йР1(И. Заметим, что в прямоугольной системе координат оба этих определения совпадают, ЬР Ы .йР1М другими словами, точно так же как обобщение обычной производной приводит к понятию ковариантной производной, обобщение понятия материальной производной с1Р (11 приводит к операции ЬР Ы. Заметим, наконец, что при использовании понятия материальной производной удобнее исходить из формулы (12,1 ). а не (12.1). Ниже мы будем пользоваться векторными обозначениями определения п. 2 переносятся при этом на случай произвольной криволинейной системы координат очевидным образом. Например, символ будет теперь обозначать упорядоченную тройку ковариантных или контравариантных (в зависимости от ситуации) компонент вектора скорости, а формула (12.1) запишется в виде  [c.34]

Дальнейшее развитие авиационной техники потребовало рассмотрения крыльев с формами в плане, отличными от формы прямого крыла большого удлинения. Теория прямой несуш ей линии, данная Л. Прандтлем, не позволяла рассматривать крылья произвольной формы в плане даже сравнительно большого удлинения. К числу таких крыльев относятся стреловидные крылья. Причина состоит в том, что в этих случаях индуктивные скорости на несуш ей линии обраш аются в бесконечность. А. А. Да-родницын (1944) обобщил теорию на случай крыла с криволинейной несущей линией, показав, что для крыльев большого удлинения это обобщение может служить достаточно хорошим приближением к теории несущей поверхности. Отметив невозможность описания обтекания только с йомощью введения понятия постоянного по хорде индуктивного угла атаки, он предложил рассматривать индуктивные скорости не на самой несущей линии, где они бесконечны, а в ее окрестности, С помощью дополнительного потока с логарифмическим потенциалом, обтекающего сечения крыла, определяется циркуляция, обусловленная конечностью размаха и криволинейностью оси крыла, а также действующие на крыло силы и моменты.  [c.94]

Метод расчета. Примененный расчетный алгоритм основан на обобщенной процедуре глобальных итераций, предназначенной для решения конечно-объемным факторизованным методом уравнений переноса на многоблочных пересекающихся сетках О- и Н-типа. Система исходных уравнений записьшается в дельта-форме в криволинейных, согласованных с границами расчетной области координатах относительно приращений зависимых переменных, включающих декартовые составляющие скорости. После линеаризации система исходных уравнений решается с помощью согласованной неявной конечно-объемной процедуры коррекции давления [1], основанной на концепции расщепления по физическим процессам и записанной в -факторной формулировке. При этом для дискретизации временных производных используется схема второго порядка аппроксимации [10]. Для уменьшения влияния численной диффузии в расчетах течений с организованным отрывом потока, весьма чувствительных к ошибкам аппроксимации конвективных членов, в явной части уравнений переноса используется одномерный аналог противопоточной схемы с квадратичной интерполяцией [11]. Одновременно, чтобы избежать ложных осцилляций при воспроизводстве течений с тонкими сдвиговыми слоями, в неявной части уравнений использован механизм искусственной диффузии в сочетании с применением односторонних противопоточных схем для представления конвективных членов. В свою очередь, для устранения немонотонностей в распределении давления при дискретизации градиента давления по схеме с центральными разностями на согласованном (с совмещенными узлами для скалярных переменных и декартовых составляющих скорости) шаблоне в блок коррекции давления введен монотонизатор с эмпирическим сомножителем. Его величина 0.1 определена в ходе численных экспериментов на задаче обтекания цилиндра и шара потоком вязкой несжимаемой жидкости. Высокая эффективность вычислительной процедуры для решения дискретных алгебраических уравнений обеспечена применением метода неполной матричной факторизации. Более подробно детали описанной процедуры расчета течения на моноблочных сетках изложены в [11].  [c.46]


Смотреть страницы где упоминается термин Обобщенные криволинейные скорости : [c.50]    [c.37]    [c.146]   
Теоретическая механика (1981) -- [ c.209 , c.212 ]



ПОИСК



Скорость обобщенная



© 2025 Mash-xxl.info Реклама на сайте