Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электропроводность явление

В опытах Альдера и Христиана [47] были измерены значительно меньшие электропроводности. Явление металлизации в тех сравнительно слабых волнах, с которыми работали эти авторы, было выражено гораздо слабее.  [c.607]

Сопротивление диффузии частиц и сопротивление миграции частиц в электрическом поле имеют одну и ту же природу, что указывает на общность механизма диффузии и электропроводности и позволяет использовать данные об электропроводности при изучении и объяснении явлений диффузии.  [c.34]


Природу термоэлектричества в металле можно качественно понять на основе простой модели свободного электронного газа. Краткое введение в элементарную теорию электропроводности было дано в начале гл. 5. Модель свободного электронного газа не может дать количественных показаний, но позволяет понять механизм явления. Далее можно построить более сложную теорию, включающую зависимость рассеяния электронов решеткой от их энергии, явление увлечения электронов фононами и т. д. Приведенные ниже элементы теории заимствованы из книги Бернара [3], где современные идеи о термоэлектричестве изложены очень ясно (см. также [12]).  [c.267]

Непосредственное сопоставление данных этой таблицы с обычными значениями электропроводности (см. (141.2)) не дает удовлетворительного результата, что, впрочем, не является неожиданным. Формулы (141.2) исходят из представления о металле как о системе, электроны которой могут считаться свободными (электроны проводимости) оптические же явления, относящиеся к области сравнительно высоких частот (видимый и ультрафиолетовый свет), зависят заметным образом от влияния связанных электронов (электронов поляризуемости), как об этом несколько подробнее будет сказано  [c.493]

Из всего многообразия физических свойств важнейшими свойствами, характеризующими вещество как диэлектрик, являются электрические — поляризация, электропроводность, диэлектрические потери и т. д. Многие годы диэлектрики применялись в основном как изоляторы. Поэтому наибольшее значение имели их малые электропроводности и диэлектрические потери, высокая электрическая прочность. В современных условиях диэлектрики используют не только в качестве пассивных элементов различных электрических схем. С их помощью осуществляют преобразование механической и тепловой энергии в электрическую (пьезоэлектрики и пироэлектрики). Ряд диэлектриков находит применение для детектирования, усиления, модуляции электрических и оптических сигналов. При этом важную роль играют такие свойства, как фотоэффект, электрооптические и гальвано-магнитные явления.  [c.271]

Внутренний фотоэффект. При облучении светом некоторых полупроводников или диэлектриков оптические электроны отдельных атомов кристаллической решетки вещества, приобретая достаточную дополнительную энергию, отрываются от атомов и превращаются в электроны проводимости. Так как проводимость полупроводников и диэлектриков обычно мала, то появление в них электронов проводимости ведет к заметному повышению их электропроводности, а следовательно, и к уменьшению их сопротивления. Это явление и называется внутренним фотоэффектом, или фотопроводимостью.  [c.168]


Фотоэффект. С установлением электромагнитной природы света волновая теория, казалось, победила окончательно. Однако мог ли автор ее экспериментального обоснования Г. Герц предполагать, что им енно ему будет суждено обнаружить явление, которое будет противоречить волновой теории Он заметил, что при освещении одного из шаров разрядника ультрафиолетовым излучением разряд между шарами возникает при значительно меньших напряжениях. Им было высказано предположение, что под действием излучения зазор между шарами становится более электропроводным. Полученное явление было названо фотоэффектом. Подробные исследования фотоэффекта по схеме, показанной на рис. 24, выполнил в 1888—1890 гг. профессор Московского университета А. Г. Столетов. Он показал, что ток в цепи  [c.117]

При одновременном протекании двух явлений они, налагаясь друг на друга, вызовут появление новых эффектов. При наложении теплопроводности и электропроводности появляется термоэлектричество, при наложении диффузии и теплопроводности появляется термодиффузия и т. д.  [c.235]

Связь между остальными параметрами-аналогами рассматриваемых явлений теплопроводности и электропроводности устанавливается из равенства Fot=Fo  [c.88]

При скоростях, сопоставимых со скоростью звука в газе и, тем более, превышающих ее, сжимаемость существенно влияет на характер гидродинамических явлений, и ее учет часто бывает более важен, чем даже учет вязкости. Движение газов с учетом их сжимаемости составляет объект изучения в газовой динамике, где основную роль играют две модели среды идеальный (т. е. невязкий) газ и вязкий газ. В последние десятилетия получили широкое развитие разделы газовой динамики, в которых существенны электропроводность, диссоциация молекул, степень разрежения и другие специфические особенности среды. Разработаны соответствующие модели этих сред и эффективные методы их исследования.  [c.25]

Подробное рассмотрение физических процессов в полупроводниках завело бы нас слишком далеко в зонную теорию твердого тела. Поэтому ограничимся перечислением нужных нам свойств полупроводников без обсуждения механизма явлений. Хорошо (до 10" % и выше) очищенный от примесей полупроводниковый кристалл при комнатных температурах имеет ничтожно малую (по сравнению с металлами) электропроводность. Все электроны находятся в связанных состояниях. Для выбивания электрона ему надо сообщить энергию выше некоторой пороговой. Пороговая энергия имеет порядок 1 эВ (0,7 эВ для германия Ge и 1,1 эВ для кремния Si). В среднем на образование пары ионов в полупроводнике тратится энергия примерно 3 эВ — на порядок меньше, чем  [c.503]

При полете тела с большой скоростью (М > 10) воздух перед его головной частью имеет очень высокую температуру, при этом происходят Явления диссоциации и ионизации, изменяются физические свойства и состав воздуха. Суш ественно изменяются вязкость, теплопроводность, испускание , электропроводность и сжимаемость.  [c.350]

Рассмотрим рассеяние электронов электронами. При Т = О электроны движутся как свободные частицы, не сталкиваясь друг с другом. Поэтому при Т > О время релаксации 2т ё е, определяемое временами между двумя последовательными столкновениями электронов, тем больше, чем меньше Т. Электрон-электронное рассеяние оказывает существенное влияние на значение электропроводности в том случае, если импульс электронов при их взаимодействии не сохраняется, т. е. часть импульса передается решетке. Это явление отмечается в так называемых процессах переброса, когда электрон в результате взаимодействия переходит из исходной зоны Бриллюэна в соседнюю (внутри зоны Бриллюэна энергия меняется непрерывно каждая из зон Бриллюэна соответствует одной энергетической зоне и содержит одно состояние на атом).  [c.457]

Явление увеличения электропроводности полупроводника под действием излучения называют фотопроводимостью и широко используют при создании различных приборов, чувствительных к освещению. Фотопроводимость может возникнуть в полупроводнике лишь при определенной, близкой к ширине его запрещенной зоны энергии фотонов падающего излучения. Излучение с энергией фотонов, меньшей ширины запрещенной зоны, будет проходить через полупроводник не поглощаясь. При энергиях, значительно больших ширины запрещенной зоны, фотоны будут поглощаться поверхностью полупроводника и образующиеся при этом свободные электроны и дырки не проникнут в его толщу.  [c.19]


Проводниками второго рода, или электролитами, являются растворы солей, кислот, щелочей и т.п. материалов, т е. вещества с ионным строением молекул. Прохождение электрического тока через электролиты связано с явлением электролиза. При этом электрические заряды переносятся вместе с ионами. Такую электропроводность называют ионной. На электродах выделяются продукты электролиза, а состав электролита при прохождении через него тока изменяете .  [c.10]

Аналоговое моделирование — это Моделирование, основанное на аналогии (в более точных терминах — изоморфизме) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими уравнениями. Примером может служить аналогия процесса передачи теплоты теплопроводностью и процесса переноса электрического заряда в электропроводной среде и то и другое явления описываются одним и тем же дифференциальным уравнением. Аналоговое моделирование осуществляется обычно на аналоговых вычислительных машинах (АВМ). Методика изучения тепловых явлений (в основном теплопроводности) в учебных лабораториях на аналоговых моделях изложена в [48]. В учебных лабораториях термодинамики аналоговое моделирование пока не испоЛь-зуется.  [c.239]

Бинарный цикл с плазменным генератором. Как известно, газы при умеренных температурах не проводят электрического тока, т. е. они не электропроводны, так как в этих состояниях в газе отсутствуют свободные носители электрического заряда. Однако с повышением температуры эти свойства газа изменяются и тем сильнее, чем выше температура. Так, при температурах 1 000° С и выше (в зависимости от рода газа) внутримолекулярные связи нарушаются — начинается распад молекул на атомы и радикалы (например, ОН) — это явление называется диссоциацией газа. При дальнейшем повышении температуры газа (свыше 4 000° С) начинается отрыв электронов от своих ядер — сначала электронов, которые вращаются на внешних орбитах. В этих условиях, например, двухатомный газ превращается в смесь, состоящую из еще уцелев-  [c.195]

К числу экспериментальных методов исследования процессов теплопроводности относится метод аналогии. При этом исследование тепловых явлений заменяется исследованием аналогичных физических явлений, которые, хотя и различаются по физической сущности, подчиняются одинаковым закономерностям и, следовательно, описываются одинаковыми дифференциальными уравнениями и условиями однозначности. В частности, аналогичны явления теплопроводности, диффузии, электропроводности и движения жидкости при ламинарном режиме.  [c.192]

В настоящее время широкое распространение получили методы электротепловой аналогии. Явление электропроводности описывается уравнением  [c.192]

При прохождении постоянного тока через загрязненные жидкие диэлектрики наблюдается спад тока с течением времени, сопровождающийся явлением электрической очистки. Эта очистка объясняется тем, что ионы примесей и всевозможные другие загрязнения переносятся электрическим полем на электроды, где и нейтрализуются, оставаясь вблизи последних, Из зоны электродов эти продукты могут быть легко удалены. Однако таким путем трудно очищать большие массы жидкостей. Электропроводность жидкого диэлектрика, не имеющего никаких примесей и загрязнений, ионная. Она определяется переносом электрическим полем ионов, образовавшихся вследствие частичной диссоциации молекул самой жидкости. Степень диссоциации молекул жидкого диэлектрика мала и зависит от структуры неполярные молекулы менее подвержены диссоциации, чем полярные. Поэтому, как правило, меньшую электрическую  [c.46]

При низких температурах объемная проводимость твердых диэлектриков может целиком определяться примесями и дефектами структуры. При повышенных температурах. ток утечки может определяться переносом ионов основного вещества диэлектрика. Для облегчения понимания особенностей ионной электропроводности твердых диэлектриков рассмотрим явления, наблюдающиеся при прохождении постоянного тока через кристалл каменной соли, который взят как самый простой и наглядный пример. Ионный характер электропроводности в данном случае предопределяется соотношениями энергий активации ионов и электронов потенциал активации ионов натрия равен 0,85 В, ионов хлора 2,55 В, а электронов 6 Б (при комнатных температурах). Заметная электронная электропроводность в каменной соли может быть обусловлена наличием некоторых примесей и действием ионизирующих излучений, приводящих к отрыву электронов от ионов. В обычных условиях при комнатной температуре подвижность наиболее слабо закрепленных в решетке ионов натрия еще настолько мала, что срыва их электрическим полем из узлов решетки при нормальной ее структуре не происходит. Наблюдающаяся при этом очень малая проводимость носит примесный характер.  [c.50]

В принципе этот метод основан на известном явлении, заключающемся в том, что при пересечении проводником магнитных силовых линий в нем наводится электродвижущая сила. Сильно ионизированный газ при достаточно большой электропроводности его и высокой температуре обладает таким же свойством, которое и используется в магнитогидродинамическом (МГД) методе превращения тепла в электрическую энергию.  [c.468]

О явлениях, обусловленных поляризацией диэлектрика, можно судить по значению диэлектрической проницаемости, а также угла диэлектрических потерь, если поляризация диэлектрика сопровождается рассеянием энергии, вызывающим нагрев диэлектрика. В нагреве технического диэлектрика могут участвовать содержащиеся в нем немногочисленные свободные заряды, обусловливающие возникновение под воздействием электрического напряжения малого сквозного тока, проходящего через толщу диэлектрика и по его поверхности. Наличием сквозного тока объясняется явление электропроводности технического диэлектрика, численно характеризуемой значениями удельной объемной электрической проводимости и удель-  [c.16]


Диэлектрические потери в аморфных, веществах ионной структуры — неорганических стеклах — связаны с явлением поляризации и электропроводности.  [c.54]

Для развития электрохимического пробоя требуется длительное время, ПОСКОЛЬКУ ОН связан С явлением электропроводности, В керамике, содержащей оксиды  [c.72]

Ферриты. Общие сведения. Ферриты представляют собой магнитную керамику с незначительной электронной электропроводностью. Общие представления о явлении ферримагнетизма были даны в 9-1. Большое удельное сопротивление, превышающее р железа в Ю —10 раз, а следовательно, и относительно небольшие потери энергии в области повышенных и высоких частот наряду с достаточно высокими магнитными свойствами обеспечивают  [c.283]

Электротепловая аналогия. Явления теплопроводности и электропроводности описываются следующими уравнениями  [c.117]

Если же математическое описание двух каких-либо явлений одинаково по форме, но различно по физическому содержанию, то такие явления называются аналогичными. Такая аналогия существует, например, между процессами теплопроводности, электропроводности и диффузии. I  [c.47]

С колебаниями атомов кристаллической решетки связаны многие физические явления в твердых телах — теплоемкость, теплопроводность, термическое расширение, электропроводность и др. Теория коле баннй атомов трехмерного кристалла крайне сложна. Поэтому мы сначала рассмотрим распространение упругих волн в однородной упругой струне и в кристаллах без учета их дискретной структуры. Затем рассмотрим колебание атомов в одно-ме13Ной решетке. После этого полученные результаты обобщим для случая трехмерной кристаллической решетки.  [c.141]

В 1911, г., проводя эксперименты по исследованию влияния примесей на остаточное соаротивление металлов, голландский физик Г. Камерлинг-Оннес обнаружил новое явление, получившее название сверхпроводимости. Изучая зависимость сопротивления ртути от температуры, он установил, что при очень низких температурах сопротивление образца исчезало, причем самым неожиданным образом. При температуре 4,2 К удельное электрическое сопротивление резко обращалось в нуль (рис. 7.31). Изложенная выше теория электропроводности металлов предсказывает, что в образцах без примесей и дефектов удельное f сопротивление должно стремиться к нулю при  [c.262]

В настоящее время известно, что необычные свойства электронов проводимости являются следствием принципа Паули, действующего в металле это заставляет применять к электронам статистику Ферми—Дирака. Заслугой Зоммерфельда [6] является то, что он первый приложил этот принцип в теории перемещения электронов в металлах. Вскоре после работы Зоммерфельда появились работы Хаустопа [7,8] и Блоха [9 —11], в которых взаимодействие между электронами и решеткой рассматривалось с квантовомеханической точки зрения, после чего началось быстрое развитие современной теории металлов. Нужно, однако, отметить, что в период между работами Друде и Лоренца и появлением теории Зоммерфельда было предложено несколько новых теорий электронной проводимости, в которых, кроме вывода различных выражений для электропроводности, теплопроводности и вездесущего числа Лоренца, делались попытки объяснить другие явления.  [c.155]

Металлы характеризуются существованием частично заполненных энергетических зон, обеспечивающих высокую электропроводность этих веществ. При образовании кристаллов металлов электроны частично заполненных зон объединяются в газ (более точно — жидкость, но изучение вопросов, связанных с поведением электронной жидкости выходит за рамки этого курса) электронов проводимости. Результирующее поле, обусловленное ионами и электронами, в окрестности ионов металлов имеет, как правило сферически-симметричный характер. В связи с этим атомы металлов в первом приближении могут рассматриваться как сферы имеющие характерный радиус, а структуры кристаллов металлов — как системы, состоящие из равновеликих шаров. По этим же причинам металлическая связь не насыщена — к любой пape тройке,... атомов всегда может быть добавлен еще один. В результате металлы характеризуются, как правило, структурами с высокими координационными числами (КЧ). Около 2/3 элементов — металлов имеет структуру с КЧ 12 (ГЦК и ГПУ), околО 20% — структуры с КЧ 8 (ОЦК), остальные с несколько меньшими КЧ. Появление для ряда металлов структур с КЧ, меньшими максимально возможных, указывает на отличие потенциальных полей ионов в соответствующих случаях от сферически-симмет-ричных. Это явление обычно объясняют подмешиванием к металлической связи направленной ковалентной связи.  [c.98]

Иногда при исследовании явления на модели используется физическая аналогия явлений. О физической аналогии явлений говорят тогда, когда сравниваемые явления имеют разную физическую природу (теплопроводность, электропроводность), но математически описываются однотипными дифференциальными уравнениями. Условия однозначности для аналогичных явлений должны формулироваться тождественно, а соответствующие критерии подобия, входящие в тождественные безразмерные уравнения, должны быть численно равны. В результате безразмерные поля переменных в аналогичных физических явлениях представляют собой тождественное распределение чисел. Характерным примером аналогии является так называемая элект-ротепловая аналогия, основанная на однотипности дифференциальных уравнений поля температуры и электрического потенциала в теле. Так для одномерных полей уравнения имеют вид  [c.138]

Формула (9-48) описывает простое наложение явлений поляризации и сквозной проводимости, не учитывая влияние электропроводности на сам процесс поляризации. В действительности с появлением сквозной проводимости в диэлектрике может дополнительно возникнуть объемная поляризация, чаще всего ее макроструктурная разновидность, и тогда Аврел возрастает с увеличением электрической проводимости.  [c.152]

THERNL - нелинейный температурный анализ стационарных и переходных режимов расчет задач электропроводности, конвекции, излучения. Исследования электрических и тепловых явлений, связанных с ударом молнии или искровым разрядом  [c.55]

Процесс электропроводности, обусловленный перемещением ионов или молионов, связан с переносом вещества — ионов, молио-нов. Поэтому при постоянном напряжении стечением времени концентрация таких заряженных частиц в объеме диэлектрика уменьшается, изменяются протекающий ток и удельная проводимость диэлектрика. Это явление используют для электроочистки, где нежелательные примеси в диэлектрике, диссоциирующие на ионы, удаляются из диэлектрика в результате процесса электропроводности на постоянном напряжении. Явление молионной электропроводности в жидких диэлектриках используют для получения тонких диэлектрических слоев на поверхности металлических деталей. Такие слои образуются при осаждении коллоидных заряженных частиц диэлектрика на электродах, которыми служат изолируемые детали, помещенные в жидкий диэлектрик, содержащий коллоидные частицы осаждаемого диэлектрического материала.  [c.138]

Метод моделирования отличается от метода аналогий, когда исследование тепловых процессов заменяется исследованием аналогичных явлений. Например, теплопроводность и электропроводность описываются аналогичными математическими уравнениями (электротеп-ловая аналогия). При математическом (аналоговом) моделировании не требуется физическая и конструктивная идентичность модели и образца, а нужна лишь аналогичность математического описания процессов. Практика показала, в сложных случаях удобными оказались электронные и электрогидродинамические модели.  [c.162]


Электропроводность твердых тел обусловливается передвижением кг к ионов самого диэлектрика, так и ионов случайных примесей, а у некоторых материалов может быть вызвана наличием свободных электронов. Электронная электропроводность наиболее заметна при сильных электрических полях. Вид электропроводности устанавливают экспериментально, используя закон Фарадея. Ионная электропроводность сопровождается переносом вещества. При электронной электропроводности это явление не наблюдается. В процессе про-хожденпя электрического тока через твердый диэлектрик содержащиеся в нем ионы примеси могут частично удаляться, выделяясь на электродах, как это наблюдается в жидкостях.  [c.37]

Очевидно, что физическая сущность крнопроводимости не сходна с физической сущностью явления сверхпроводимости. Криопроводимость — частный случай нормальной электропроводности металлов в условиях криогенных температур.  [c.211]

Истинное значение этих явлений как величайших открытий осталось не понятым ни самим Герике, ни его современниками. Между тем первое означало открытие двух зарядов электричества, второе — электропроводности (официально сделаны в 1729 г. англичанином Греем и в 1734 г. французом Дюфе), третье — люминесценции, четвертое — вслед за Гильбертом почти что электромагнитной индукции.  [c.53]


Смотреть страницы где упоминается термин Электропроводность явление : [c.214]    [c.322]    [c.231]    [c.124]    [c.338]    [c.234]    [c.104]    [c.312]   
Справочное руководство по физике (0) -- [ c.212 ]



ПОИСК



Использование явления электропроводности

Электропроводность

Электропроводность металлических проводников. Явление сверхпроводимости и возможности ее практического использования

Явление



© 2025 Mash-xxl.info Реклама на сайте