Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение фактор

В частности, выявлены следующие факторы направленность скольжения (в том числе возвратно-вращательное движение по плоской и цилиндрической поверхностям) амплитудно-частотная характеристика колебательного движения форма, твердость и положение образцов в трущейся паре (прямые, обратные и одноименные пары) способ, состояние и вязкостно-кислотные свойства смазок состояние поверхностей трения (фактор приработки).  [c.55]


Влияние продуктов износа на трение и износ замечено давно [1, 21, 23, 28, 32 и др. ] В работах [18, 28] отмечается, что наличие продуктов (частиц) износа способствует некоторому повышению коэффициента трения, в отдельных случаях коэффициент трения почти не зависит от наличия или отсутствия частиц износа, а иногда [1] частицы износа, действуя подобно шарикам, снижают трение. Факторами, влияющими на сохранение частиц износа в зоне трения, могут являться площадь трения, наличие канавок или пазов на поверхности, коэффициент взаимного перекрытия. В работе [18] приведены результаты исследования трения асбофрикционных материалов в паре с металлами при наличии продуктов износа в зоне трения и при искусственном их удалении. Установлено, что при удалении частиц износа коэффициент трения снижается на 15—20%, а износ — в несколько десятков раз.  [c.124]

Как уже указывалось, момент, загружающий двигатель, соединенный с гидродинамической муфтой, представляет собой сумму момента циркуляционного и момента от жидкостного трения (фактор механического трения за его малостью отбрасываем). В силу конструктивных особенностей гидродинамических муфт оба момента являются полезными.  [c.15]

Скольжение при вращательном движении. В машиностроении очень широко распространено вращательное движение деталей и связанное с ним трение скольжения при вращении. Примером такого трения может служить трение вала в подшипнике скольжения. Теоретически вращающийся вал не должен непосредственно соприкасаться с подшипниками, т. е. должна быть обеспечена гидродинамическая смазка (жидкостное трение). Фактором, благоприятствующим жидкостному трению в подшипниках скольжения, является насосное действие быстро вращающихся валов, обусловливающее очень высокЬе давление смазки в подшипнике. Поэтому для надежной работы подшипника очень важно не снизить насосное действие вала неправильным расположением масляных канавок или их выполнением (острые кромки соскабливают масляную пленку). Влияние вязкости масла на работу подшипников скольжения в сравнении с влиянием подъемной силы масляного клина очень мало. Это мнение в последнее время начало широко распространяться среди автомобилистов. Теперь в качестве смазочных масел для автомобильных двигателей вместо высоковязких масел 5АЕ 50 и 5АЕ 40 применяют менее вязкие масла 5АЕ 30 и ЗЛЕ 20. Все чаще переходят на использование еще менее вязкого масла ЗЛЕ 10 Этим достигается значительное снижение потерь на трение и, следовательно, улучшается экономичность двигателей.  [c.193]


Таким образом, условием подобия процессов гидродинамики и теплообмена при охлаждении шаровых твэлов будет, помимо геометрического подобия и температурного фактора, равенство трех критериев Re, Nu и Рг — модельного эксперимента и натурного явления. Хотя критерий Re является мерой сил инерции и трения потока теплоносителя, его применяют также и для  [c.47]

Выбор профиля резьбы. Определяется многими факторами, важнейшие из которых прочность, технологичность и силы трения в резьбе. Так, например, крепежная резьба должна обладать высокой прочностью и относительно большими силами трения, предохраняющими крепежные детали от самоотвинчивания.  [c.18]

Экспериментальные исследования показали, что значение коэффициентов трения на контактной поверхности зависит от многих факторов способа сборки, удельного давления р, шероховатости поверхности, рода смазки поверхностей, применяемой при запрессовке деталей, скорости запрессовки и пр. Поэтому точное значение коэффициента трения может быть определено только испытаниями при заданных конкретных условиях . В приближенных расчетах прочности соединения стальных и чугунных деталей принимают  [c.87]

При более точных (проверочных) расчетах принимаются во внимание факторы, которые учитываются коэффициентом полезного действия. Последний определяется из следующих предположений. Потеря мощности в планетарной передаче образуется из потерь на трение в зацеплениях, опорах и потерь на размешивание и разбрызгивание масла. Расчетным путем относительно точно можно определить потери в зацеплении и опорах. Аналитическое определение гидравлических потерь сложно и приближенно, поэтому их определяют опытным путем. Обычно они составляют небольшую часть от потерь в зацеплении и в расчетах часто не учитываются.  [c.165]

При лабораторных испытаниях стремятся выявить основной фактор. Во время испытания изменяют одно из внешних условий трения (например, давление), а остальные (скорость относительного перемещ.ения, среду и т. д.) оставляют постоянными.  [c.76]

За точкой а коэффициент трения определяется гидродинамическими факторами. В соответствии с уравнением (126) коэффициент трения непрерывно повышается с увеличением  [c.352]

Необходимая величина натяга зависит от формы поверхностей качения, угла контакта, расстояния между подшипниками, характера нагрузки, частоты вращения, температуры узла, коэффициента трения, величины рабочей нагрузки (радиальной и осевой) и других факторов. Учесть в расчете все эти факторы очень трудно.  [c.494]

Коэффициенты трения покоя и движения зависят от многих факторов природы материала и наличия пленок на его поверхности (смазка, окисел, загрязнение), продолжительности неподвижного контакта, скорости приложения сдвигающего усилия, жесткости и упругости соприкасающихся тел, скорости скольжения, температурного режима, давления, характера соприкосновения, качества поверхности и шероховатости При прочих равных условиях  [c.68]

Зависимость (19.14) не учитывает таких специфических факторов работы зубчатых передач, как гидродинамические явления, происходящие в слое смазки между контактирующими поверхностями, наличие динамических нагрузок и касательных сил трения, неравномерность нагрузки и т. д. Поэтому при использовании формулы Герца для расчета зубьев необходимо вводить некоторые коэффициенты.  [c.292]

Ф — фактор трения, определяемый при помощи соотношения  [c.136]

Из сравнения (4. 3. 23) и (4. 3. 16) видно, что в рассматриваемом случае, когда т , средний радиус пузырька зависит от режима течения, т. е. от критерия Ке и от фактора трения Ф. При этом зависимость от Ф в (4. 3. 23) является более сильной, чем в (4. 3. 16). Величину можно оценить, подставляя выражение для (4. 3. Ц) в (4. 3. 20) и полагая С2=1. Имеем  [c.141]

Дробление жидкости давлением. При дроблении давлением жидкость принудительно пропускается через отверстие. Распыление жидких топлив подробно описано в книге [259]. Различные факторы, влияющие на процесс распыления, рассмотрены в работе [156] перепад давлений в отверстии, вязкость жидкости, плотность воздуха. Тайлер [833] подтвердил результаты Релея [767], приложимые к тем жидким струям, которые испытывают малое сопротивление трения со стороны окружающей среды [523]. При наличии большого поверхностного трения струя жидкости не распыляется немедленно, как это следует из теории Релея, а разбивается на ряд тонких струек [98], которые затем дробятся согласно теории Релея. В работах [494, 578] исследовалось вторичное дробление жидкости путем разрушения образующихся ранее капель.  [c.145]


Лабораторные исследования [84] показали, что для возникновения фреттинг-коррозии при трении стали о сталь требуется кислород, а не влага. Разрушение во влажном воздухе меньше, чем в сухом ещ,е меньшие разрушения наблюдаются в атмосфере азота. С понижением температуры коррозия усиливалась. Таким образом, становится очевидным, что механизм фреттинг-коррозии не электрохимический. Разрушение увеличивается с возрастанием нагрузки вследствие интенсивного питтингообразования на контактирующих поверхностях, так как продукты коррозии, например а-РеаОз, занимают больший объем (в случае железа — в 2,2 раза), чем металл, из которого образуется данный оксид. Так как при колебательном скольжении оксиды не могут удаляться с поверхности, их накопление ведет к локальному увеличению напряжения, а это ускоряет разрушение металла в тех местах, где скапливаются оксиды. С увеличением скольжения фреттинг-коррозия также возрастает, особенно при отсутствии смазки на. трущихся поверхностях. Увеличение частоты при одном и том же числе циклов снижает разрушение, но в атмосфере азота этого эффекта не наблюдается. На рис. 7.19 представлены графики зависимости фреттинг-коррозии от разных факторов. Заметим, что скорость коррозии в начальный период испытаний больше, чем при установившемся режиме.  [c.165]

Длительность стадий образования физического контакта А и химического взаимодействия Б здесь существенно больше, чем при сварке плавлением, и зависит от ряда факторов физикохимических и механических свойств соединяемых материалов, состояния их поверхности, состава внешней среды, характера приложения давления и других средств активации (ультразвук, трение и т. д.).  [c.14]

Конструкционное демпфирование в неподвижных соединениях. Наряду с внешними демпфирующими факторами на колебания механических систем заметное влияние могут оказать энергетические потери внутри самой конструкции (конструкционное демпфирование). Эти потери происходят из-за трения в кинематических парах, а также в соединениях типа прессовых, шлицевых, резьбовых, заклепочных и т. п. Хотя такие соединения принято называть неподвижными, в действительности при их нагружении неизбежно возникают малые проскальзывания по контактным поверхностям на соответствующих относительных перемещениях силы трения совершают работу.  [c.282]

Такие решения с применением систем уравнений Лагранжа второго рода являются приближенными не только из-за численных методов решения дифференциальных уравнений, но и потому, что трение в кинематических парах здесь можно оценить лишь весьма приближенно, а упругость звеньев и зазоры в кинематических парах не учитываются вообще. Поэтому при разработке опытных образцов ПР применяют экспериментальные методы динамического исследования ПР, позволяющие с помощью соответствующих датчиков и аппаратуры записать осциллограммы перемещений, скоростей и ускорений звеньев и опытным путем учесть как неточности теоретического расчета, так и влияние ранее неучтенных факторов.  [c.338]

Таким образом, заданное передаточное отношение можно обеспечить множеством различных схем планетарных передач, которые будут значительно отличаться по размерам, к. п. д., динамическим качествам. Схемы должны выбираться как с учетом качества простых планетарных передач, из которых компонуется зубчатый редуктор, так и назначения механизма, условия и режима его работы, места установки, а также учета типа передачи и вида зацепления, распределения и г ц по ступеням и выбора числа ступеней, оценки потерь на трение, вибрации и упругости звеньев и пр. Поэтому в общем случае выбор схемы с учетом множества факторов может быть выполнен только методами оптимизации с применением ЭВМ.  [c.420]

Коэффициент трения (сцепления) в соединениях с натягом зависит от материала сопрягаемых деталей, шероховатости их поверхностей, натяга, вида смазки, направления смещения деталей и других факторов. В практических расчетах для деталей из стали и чугуна приближенно можно принять / 0,08 (при сборке под прессом) и / л 0,14 (при сборке с нагревом охватывающей детали или с охлаждением охватываемой [13]).  [c.223]

Несмотря на то, что трение есть одно из >/7777777 самых распространенных явлений природы и встречается почти во всех задачах механики, точные законы трения до сих пор не установлены вследствие трудностей, связанных Рис. 192. с выявлением полной физической картины возникновения силы трения и с количественной оценкой всех факторов, от которых эта сила зависит. Поэтому практически при учете сил трения пользуются законами, которые носят в основном качественный характер и представляют собой только некоторое приближение к действительности. Эти законы были установлены в результате первых опытов над трением, проделанных Амонтоном (1699 г.), и более точных экспериментальных исследований Кулона (1781 г.).  [c.197]

Множитель v учитывает влияние режимов течения на законы трения (фактор негомогенности смеси) ri может быть найден из выражения [45]  [c.195]

Ошибка в определении физической ширины для рентгенограмм, снятых при а с Г, составляла (= 0 % при а > Г она уменьшалась До 3 %. Погрешность определения периода рещетки при выбранных (Я,/г,/, ) составляла порядка 0,001 нм. /Исследование физической ширины ин-тер(ференционных линий. Проводили две серии опытов в опытах первой серии рассматривали кинетику структурных изменений в поверхностных слоях меди при постоянных внешних условиях трения в опытах второй серии предусматривали выявление для матер 1 ла пары трения факторов воздействия, способствующих проявлению режима избирательного переноса.  [c.104]

Комплекс Кп.т согласно (4-26)—критерий проточности только твердого комшонента — мера отношения его силы инерции к силам трения, вызываемым частицами на неподвижных границах потока. Ранее (гл. 1) получено число проточности Кп для всей дисперсной системы. Очевидно, что в ряде случаев комплексы Кц, Кп.т Кст являются определяемыми, поскольку в них входит напряжение (сила) взаимодействия частиц со стенкой — функция основных определяющих факторов.  [c.121]


Закономерно полагать, что коэффициенты внутреннего и внешнего трения для движущегося слоя (/н, /вн) зависят не только от коэффициентов трения покоя, но также и от факторов движения и геометрических, режимных и физических характеристик потока. Следовательно, коэффициент трения движущегося слоя является безразмерной функцией ряда критериев — аргументов движущегося слоя. К сожалению, опытные данные о коэффициентах трения движущегося слоя практически отсутствуют. Это вызвано отнюдь не отсутствием интереса к этой важнейшей задаче, а сложностью эксперимента. В [Л. 106, 108] установлено, что при движении слоя коэффициент внешнего трения в 3—4 раза уменьшается. Зенз [Л. 138] предлагает пять различных методов оценки коэффициента внутреннего трения, в которых лишь имитируется движение слоя.  [c.290]

Оконча1ельное чистовое нарезание зубьев примерно 8-й степени точности производится строганием на зубострогальных станках (рис. 169, а). Станки эти работают методом обкатки (рис. 169, б) два строгальных резца (/ и 2) совершают прямолинейные возвратно-поступательные движения вдоль зубьев обрабатываемой заготовки при обратном ходе резцы немного отводятся от обрабатываемой поверхности для уменьшения бесполезного изнашивания режущей кромки от трения взаимное обкатывание заготовки и резцов обеспечивает получение профиля эвольвенты. Время нарезания зуба в зависимости от материала, модуля, припуска на черновую обработку и других факторов колеблется от 3,5 до 30 сек.  [c.313]

Существенный недостаток прессового соединения — зависимость его нагрузочной способности от ряда факторов, трудно поддающихся учету широкого рассеивания значений коэффициента трения и натяга, влияния рабочих температур на прочность соединения и т. д. К недостаткам соединения относится также наличие высоких сборочных напряжений в деталях и уменьшение их сопротивления усталости вследствие концентрации давлений у краев отверстия. Влияние этих недостатков снижается по мере накопления результатов экспериментальных и теоретических исследований, позболяюш,их совершенствовать расчет, технологию и конструкцию прессового  [c.91]

Прижатие осуществляют пружиной (см. рис. 11.6) или шариковым нажимным устройством (см. рис. 11,5). Диски изготовляют из стали и закаливают до высокой твердости HR 50.. . 60). Вариатор работает в масле. Обильная смазка значительно уменыпает износ и делаег работу вариатора устойчивой, не зависимой от случайных факторов, влияющих па трение. Снижение коэффициента трения при смазке в этпх вариаторах компенсируют увеличением числа контактов. Для умеиьи1ения скольжения (потерь) дискам придают коническую форму (конусность ГЗО. . , 3 "00 ). При этом получают точечный первоначал ,-ный контакт, переходящий в небольшое пятно под действием нагрузки. Тонкие стальные диски позволяют получить компактную конструкцию при значительной мощности.  [c.215]

Коэффициент трения возрастает с увеличением шероховатости поверхностей и снижается с повышением давления (рис, 322), так что иной раз целесообразны меньшие натяги с выгодой для прочности вала и втулки. При сборке с нагревом или охлажденне.м деталей коэффициент трения в 1,3 —2,5 раза выше, чем при сборке под прессом. Коэффициент трения можно значительно повысить нанесением гальванических покрытии. В зависимости от перечисленных факторов коэффициент трения имеет величину / = 0,06 -ь 0,25, а иногда и выше. Ценность расчета точности состоит в том, что он позволяет определить влияние геометрических  [c.464]

Автоколебания или самовозбуждаю-щиеся колебания, т. е. колебания, в которых возмущающие силы вызываются самими колебаниями, например фрикционные автоколебания, вызываемые падением силы трения с ростом скорости и другими факторами. При опасности возникновения автоколебаний необходим расчет динамической устойчивости.  [c.18]

Потери в зацеплении вызываются силами трения между зубьями. Силы трения в режиме полужидкостной смазки растут с увеличением шероховатости поверхности, с уменьшением вязкости масла и с умень-1иением скорости. Влияние этих факторов на силу трения в значительной степени связано с их влиянием на несущую способность масляного клина между зубьями.  [c.198]

Потери на трение в зацеплении обычно принимают пропорциональными полезной нагрузке и относят к так называемым нагрузочным но1ерям. Коэф( )Ициент трения скольжения между зубьями j п зани-симости от указанных факторов обычно колеблется и пределах 0,025... 0,08, За расчетные можно принимать следуюш,ие его значения в зависимости от сумм,1рной скорости качения г , = sin Хл  [c.199]

Разгрузку налов и подшипников применением многопоточности, замыкание осевых сил в шевронных передачах и раздвоенных зубчатых передачах с противоположным направлением углов наклона зубьев, при возможности направление силовых факторов навстречу один другому, проектирование дегалей способных к восприятию нагрузок нескольких видов вмест(3 введения отдельных деталей, разгрузка передач трения, работающих в переменном режиме, введением механизма еамозатягивания, обеспечивающего уменьшение сил прижатия с уменьшением полезной нагрузки.  [c.482]

При исследовании осаждения твердых частиц [56, 108] установлено, что основным фактором, влияющим на вертикальное движение твердых частиц в потоке, является отношение конечной скорости осал дения щ к скорости трения и (динамической скорости), причем  [c.165]

Существует предположение, что возникающие при трении локальные перегревы металла приводят к его окислению, после чего происходит истирание поверхностного оксидного слоя [89]. Хотя трение несомненно, вызывает локальный разогрев до высоких температур, разрушение при фреттинг-коррозии обусловлено не только высокотемпературным окислением. Это подтверждается следующими факторами увеличением разрушения при температурах ниже комнатной снижением разрушения при высоких частотах, когда температура на поверхности максимальна тем, что при фрет-  [c.168]

Явление трения используется в технике. Во всех случаях, когда скольжение тел нежелательно, трение, препятствуя сколь-женинэ, является полезным фактором, например в ременных передачах, соединениях с натягом, болтовых соединениях и т. д. Трение при относительном движении является вредным, так как на преодоление сил трения затрачивается дополнительная энергия, например при вращении валов в подшипниках, при движении поршня в цилиндре двигателя и т. д.  [c.70]


Смотреть страницы где упоминается термин Трение фактор : [c.92]    [c.251]    [c.111]    [c.203]    [c.353]    [c.69]    [c.162]    [c.188]    [c.178]    [c.278]    [c.146]    [c.223]   
Основы теории штамповки выдавливанием на прессах (1983) -- [ c.25 ]



ПОИСК



334 факторы, определяющие силу прокатки прокатке, Коэффициент трения

Влияние на трение различных факторов

Влияние температурного фактора на коэффициент трения и теплоотдачи при турбулентном течении газа

Влияние температурного фактора на трение и теплообмен при турбулентном течении газа

Временные факторы мощности, работы трения

Временные факторы мощности, работы трения скорости скольжения

Гаркунов, А. А. Старосельский. Конструктивные факторы повышения долговечности узлов трения

Жесткость узлов, податливость и специальная конфигурация деталей как факторы повышения износостойкости пар трения

Зависимость коэффициента трения от факторов деформации

Муфты сцепления — Влияние на силу трения различных факторов 213—215 — Мате

Муфты сцепления — Влияние на силу трения различных факторов 213—215 — Мате геометрических размеров ведущих и ведомых элементов 221, 222 — Виды изнашивания 222 — Влияние межмолекулярно

Муфты сцепления — Влияние на силу трения различных факторов 213—215 — Мате го взаимодействия в зонах фактического

Муфты сцепления — Влияние на силу трения различных факторов 213—215 — Мате износ 223 — Определение срока службы

Муфты сцепления — Влияние на силу трения различных факторов 213—215 — Мате касания 216, 217 — Предельно допустимый

Муфты сцепления — Влияние на силу трения различных факторов 213—215 — Мате риалы для их изготовления 69 — Назначение 212 — Особенности конструкции 211 Принцип работы

Способы улучшения захвата и влияние различных факторов на коэффициент трения при прокатке

Трение вязкое в как фактор, влияющий на движение упругой среды в коротких

Трение скольжения Влияние различных факторов

Тренне факторы

Тренне факторы

Фактор трения Фаннинга

Факторы трения в процессах обработки металлов давлением

Факторы, определяющие долговечность смазки в узле трения



© 2025 Mash-xxl.info Реклама на сайте