Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условии граничные для динамического случая

Условия граничные для динамического случая 426, 428, 433, 437, 440  [c.556]

Относительно динамических уравнений можно поставить задачи, совершенно аналогичные тем основным задачам, которые были сформулированы выше ( 20) для статического случая. Существенным различием является то, что к граничным условиям присоединяются еще и начальные условия , т. е. задание смещений и скоростей точек тела в определенный начальный момент времени tQ. ]Математически эти задачи формулируются так  [c.81]


Важное практическое значение имеет решение вопросов концентрации динамических температурных напряжений в окрестности оболочечных, пластинчатых, стержневых, сферических, цилиндрических, круговых включений в твердых телах. Решение этих вопросов значительно облегчается, если область, занятую включением, удается исключить из рассмотрения таким образом, что их влияние характеризуется усложненными граничными условиями. Включения типа пластин и оболочек (один характерный размер мал по сравнению с двумя другими) рассмотрены в работе [45] для классического случая. В [47] исследованы случаи линейного включения (два характерных размера малы по сравнению с третьим) и объемного включения (все три размера включения соизмеримы) для классической квазистатической задачи термоупругости. В [49] выведены термомеханические граничные условия на поверхности тел с покрытиями типа пластин и оболочек.  [c.35]

Таким образом, интегральные соотношения импульсов и энергии образуют систему обыкновенных дифференциальных уравнений, связывающих искомые параметры f 2 и 51 с линейными динамическими характеристиками пограничного слоя и условиями обтекания поверхности. Они также включают граничные условия на внутренней (у = 0) и внешней (р = б р = бт) границах пограничного слоя. Для решения интегральных соотношений импульсов и энергии необходимо задать условия на входе в канал. Например, для случая, когда динамический и тепловой пограничные слои формируются от начала пластины, они имеют следующий вид  [c.30]

Рассмотрены ламинарные течения вязкой несжимаемой жидкости и теплообмен в каналах при произвольном малом отклонении их поверхности от цилиндрической. Приведена линейная система уравнений и граничных условий для возмущенных динамических и тепловых полей, полученная путем линеаризации полной системы уравнений Навье-Стокса около решения для развитых течений в цилиндрических трубах произвольного сечения. Для практически важного случая, когда возмущения поверхности каналов сосредоточены на участке конечной длины, показано, что интегральные динамические и тепловые характеристики каналов находятся без решения трехмерных уравнений путем перехода к эффективным двумерным краевым задачам, сложность решения которых не выше, чем для развитых течений. Дано обобщение развитой теории на течения с силовыми источниками малой эффективности. Рассмотрены приложения к плоским каналам и круглым трубам с возмущенными поверхностями.  [c.374]


Настоящая работа является дальнейшим развитием недавно разработанного метода, ранее изложенного в публикациях [1, 2] для исследования изгиба и устойчивости тонких упругих пластинок. Предлагаемый метод представляется мощным аппаратом для исследования таких динамических задач, сложная математическая трактовка которых не позволяет решать их аналитическими или другими численными методами. Применение метода продемонстрировано для случая эллиптической пластинки как с защемленными, таК и с-шарнирно опертыми краями. В то время как граничные условия типа защемления уже были предметом ряда предыдущих исследований, как чисто теоретических, так и численных, ис-  [c.181]

Перспективным является метод математического моделирования процесса распространения механических возмущений в системе, состоящей из большого числа элементарных блоков. Этот метоД при-менен для исследования волновых процессов и динамических напряжений и деформаций в стержнях, цилиндрах и сферах из упругого, упругопластического и упруговязкого материала [28, 38, 39]. Он удобен для решения задач с помощью ЭВМ. Этим методом можно рассчитать напряженно-деформированное состояние тел с произвольными граничными условиями, со сложными реологическими свойствами, анизотропными и неоднородными по объему, с учетом температурных, наследственных и других эффектов. Решение статических задач может быть получено как предельный случай решения соответствующих динамических задач после затухания колебаний.  [c.253]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]

К решению динамических задач теории упругости метод Винера— Хопфа (см. I гл. I, и. 4) впервые был применен при исследовании стационарной задачи дифракции на полубесконеч-ном разрезе со свободными краями, а также при изучении напряженного состояния, возникающего при мгновенном образовании полубескоиечной трещины. В этих задачах имеют место смешанные граничные условия, заданные на двух полубесконечных интервалах, при одном граничном условии, сквозном по всему бесконечному интервалу. Ниже на примере решения плоской задачи о вдавливании гладкого штампа [59] проиллюстрируем применение этого метода в динамической теории упругости. Для простоты ограничимся случаем полубесконечного штампа.  [c.483]


Элементы a j (к, I — , 2) матрицы АЧ отображают динамические свойства /-ГО участка и являются функциями оператора дифференцирования р = с11си. В этом смысле соотношения (32) или (33) фактически представляют операторную запись дифференциальных уравнений движения /-го участка. Дифференциальные уравнения движения системы в целом представляют при этом совокупность равенств вида (33), составленных для всей системы или отдельных ее частей, и граничных условий, задающих закон движения граничных сечений (случай кинематического возбуждения) или определяющих действующие в этих сечениях внешние силы (силовое возбуждение),  [c.182]

Обобщенные несвязанные динамические задачи термоупругости для полупространства, слоя, цилиндра, пространства со сферической или цилиндрической полостью изучались в работах [28, 39, 40, 52, 54, 55] при граничном условии теплообмена первого или третьего рода для случая, когда температура среды изменяется в начальный момент времени на некоторую величину, оставаясь далее неизменной (тепловой удар). В работе [29] учитывалась также конечность скорости изменения теплового воздействия на поверхности пространства со сферической полостью. В. Г. Андреев и П. И. Уляков [1] обобщили результаты М. Д. Михайлова [39] для полупространства, учитывая конечность скорости изменения теплового воздействия на его поверхности. В. Г. Чебан и В. Г. Сучеван [59] решили обобщенную несвязанную динамическую задачу термоупругости для полупространства с учетом выгорания материала.  [c.116]

D. S hlottmann [2.189, 2.190] (1967) исследует свободные колебания прямоугольных пластин в уточненной постановке. Используется решение статической задачи теории упругости для толстой пластины в форме Буссинеска ). Это решение дополняется учетом динамических эффектов. Предполагается, что массовые силы сосредоточены на боко.вых поверхностях пластины. Силы инерции учитываются как внешние нагрузки в теории пластин Кирхгофа, инерция вращения не учитывается. TaiKHM образом, динамические эффекты учитываются приближенно в граничных условиях. Рассмотрен случай гра-  [c.163]

В случае моделирования безнапорных турбулентных потоков, отвечающих квадратичной области сопротивления (мы далее ограничимся рассмотрением только этого случая движения), исход я т и з ч и сл а Ф руда, считая что такого рода движение обусловливается только силами тяжести. Эта область параметров потока, когда движение жидкости не зависит от числа Рейнольдса, называется автомодельной в отношении чисел Рейнольдса (см. на рис. 4-24 область, расположенную правее кривой Л В). При моделировании гидравлических явлений, отвечающих указанной автомодельной области, поступают следую-й им образом а) создают русло модели, геометрически подобное действительному (натурному) руслу (вадюча я геометрическое подобие выступов шероховатости) б) задают в Граничном се ч е н и и модельного русла движение жидкости, кинематически подобное (для начального момента времени) движению ее в натуре в) дополнительно в граничном сечении модельного русла создают условия, при которых получается равенство для модели и для натуры чисел Фруда, В результате указанных операций в пределах модельного русла автоматически образуется поток, динамически подобный натурному потоку, что и требуется для проведения соответствующих исследований.  [c.477]


Смотреть страницы где упоминается термин Условии граничные для динамического случая : [c.275]    [c.234]    [c.276]   
Прочность Колебания Устойчивость Т.3 (1968) -- [ c.426 , c.428 , c.433 ]



ПОИСК



Граничные условия

Свободные Условия граничные для динамического случая

Условия граничные динамические



© 2025 Mash-xxl.info Реклама на сайте