Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Случаи кинематического возбуждения

В случае кинематического возбуждения рассматривают ко ффи-циенты  [c.285]

В случае кинематического возбуждения (рис. 12, б) (50) — (55) сохраняют силу, если в них положить  [c.246]

В случае кинематического возбуждения колебаний  [c.118]

Случаи кинематического возбуждения. К дифференциальному уравнению (5.6) сводятся не только задачи о силовом возбуждении, но также задачи о кинематическом возбуждении, когда колебания механической системы вызываются некоторым заданным (в частности, колебательным) движением каких-либо ее точек.  [c.103]


Для возбуждения вынужденных колебаний необходимо действие Eia точки механической системы возмущения в той или иной форме. Наиболее часто встречаются случаи силового и кинематического возбуждений. Рассмотрим эти случаи на примере прямолинейных колебаний груза массой т по горизонтальной гладкой плоскости (рис. II8,а) под действием пружины, жесткость которой с.  [c.446]

Вынужденные колебания — колебания, вызванные вынуждающей силой, а в случаях механических колебаний вызванные также кинематическим возбуждением.  [c.139]

В рассмотренной конструкции движение лотка полностью определяется параметрами кривошипно-шатунного механизма и числом оборотов двигателя. В этом случае имеет место так называемое кинематическое возбуждение. Наряду с таким кинематическим возбуждением, как мы уже знаем, широко используются методы силового возбуждения с помощью специальных вибраторов.  [c.107]

На рис. 7.8, а представлена кинематическая схема машины для виброударных испытаний с силовым возбуждением. Стол 4 опирается на упругий элемент 3 и связан с вибрато- ром 2, несущим грузы 1. Соответствующая динамическая модель представлена на рис. 7.8, б. Различие между этими двумя схемами очевидно. В первом случае, т. е. при кинематическом возбуждении стола, задача сводится к анализу системы с одной степенью свободы, поскольку движение стола считается заданным. Во втором случае возбуждение стола носит силовой характер и его движение, так же как и движение  [c.230]

Для обеспечения надежной записи крепление торсиографа с валом двигателя должно быть как можно более жестким, ибо в противном случае искажение амплитуды записи от кинематического возбуждения может достигнуть значительной величины. Условием достаточной жесткости привода торсиографа ( j-) является следующее неравенство  [c.387]

МПФ при кинематическом возбуждении. В этом случае входной вектор состоит из обобщенных перемещений, скоростей или ускорений, выходной сектор — из сил взаимодействия с присоединенными системами или с жесткими опорами, а также из кинематических величин, аналогичных входным. Соответствующие передаточные функции можно называть операторной жесткостью, операторным импедансом, операторной массой, передаточной функцией перемещений (скоростей, ускорений). В многомерной системе получается матрица операторных жесткостей и т. д. Пр замене параметра р на /со получают матрицу комплексных жесткостей и т. п.  [c.74]


На рис. 7.3, а показан участок провода (струны), с которым контактирует, например, движущийся троллейбус. Контактное устройство (токосъемник) можно представить как сосредоточенную массу т и жесткость С (рис. 7.3, б). Из-за случайных неровностей дороги (Л) точка получает случайные вертикальные перемещения, что приводит к кинематическому возбуждению системы. В зависимости от вероятностных характеристик дороги, скорости движения V и остальных параметров системы (т, j, Q q) при возникающих колебаниях возможны случаи, когда контактная сила между проводом и массой т в дискретные моменты времени обращается в нуль. Это может иметь место, так как связь между проводом и массой односторонняя. В реальных условиях всегда имеется небольшое провисание провода (штрихпунктирная линия на рис. 7.3, а), что очень сильно увеличивает вероятность нарушения контакта.  [c.308]

Второй тип возбуждения — кинематическое возбуждение колебаний (тип к). В этом случае жесткое основание движется по закону (t) = = тогда правая часть уравнений имеет вид  [c.48]

Моделирование возмущений. При моделировании сил и моментов, возбуждающих вибрацию, необходимо установить зависимость между амплитудой и частотой возмущающей силы и параметрами погрешности. Различают силовое и кинематическое возбуждение вибрации. В первом случае источником колебаний являются силы или моменты сил инерции элементов. Например, при вращении неуравновешенного ротора возникают периодические силы инерции  [c.637]

В данном случае имеем кинематическое возбуждение колебаний массы 1, подробно рассмотренное в 1-8.  [c.53]

Резонансные нагрузки могут возникать как при кинема гическом, так и при силовом возбуждении. Кинематическое возбуждение характерно для случаев несоосного соединения вращающихся деталей (крепление с так называемым дезаксиалом), при существенном отступлении геометрической формы барабанов, блоков, ходовых колес (исследования В. Ф. Гайда-маки) и других рабочих органов от круглой, при движении крана или ге-лежки по волнообразным рельсам (исследования А. Г. Горбачева) и т. д.  [c.200]

В некоторых случаях возбуждение колебаний задается кинематически, когда каким-либо точкам системы предписано некоторое определенное движение — оно также может быть детерминированным или случайным процессом. В частности, кинематическим является возбуждение колебаний автомобиля или железнодорожного вагона при движении по неровному пути. Как будет показано ниже, любое кинематическое возбуждение может быть представлено в виде некоторого эквивалентного силового возбуждения, т. е. заменено действием соответствующих сил.  [c.15]

На рис. 5.2 показаны еще два примера систем с кинематическим возбуждением колебаний. В первом случае вертикальные колебания упруго подвешенного груза 1 вызываются заданными вертикальными колебаниями платформы 2] во втором случае крутильные колебания  [c.104]

Следует подчеркнуть, что для многих цикловых механизмов предельные режимы работы, как правило, располагаются на достаточно большом удалении от основных зон параметрического возбуждения. В этих случаях, подробно рассмотренных в гл. 5, динамические нагрузки и уровень искажений заданных кинематических функций оказываются недопустимо большими еще на далеких подступах к основным зонам параметрического резонанса. Однако имеется класс механизмов, работающих на повышенных скоростях, достигающих, а иногда перекрывающих ряд критических зон. К этому классу можно отнести механизмы, у которых функция положения обладает повышенной гладкостью , т. е. не имеет существенных скачков или резких изменений производных достаточно высокого порядка. Этими свойствами, например, обладают эксцентриковые механизмы, ряд шарнирно-рычажных механизмов, работающих без значительных приближенных вы-стоев ведомого звена, и др.  [c.246]

В гл. III отмечено, что аппаратурный способ программирования развиваемых усилий или перемещений с формированием электрических сигналов, пропорциональных нагруженности образца или его деформации, предопределяет основной состав динамической схемы каждой испытательной машины. Применительно к машинам с кривошипным возбуждением динамическая схема в самом общем случае может быть представлена в виде дискретной колебательной системы, изображенной на рис. 63, где l — жесткость образца или общая жесткость образца и других упругих элементов, соединяющих его с возбудителем Сч — жесткость динамометра — масса деталей возбудителя, участвующих в колебательном процессе, совершающая кинематически ограниченные перемещения с амплитудой, равной радиусу кривошипа тп2 — свободная масса на конце нагружаемой системы тз — масса зажимного устройства, сосредоточенная между образцом и динамометром Xj—Лз — динамические перемещения масс, отсчитываемые от их равновесного положения. Размерности этих обозначений зависят от вида возбуждаемых колеба-  [c.97]


Эластичным возбуждением считают такое, при котором заданной величиной является нагрузка, постоянная илн программируемая на всем протяжении испытания. В этом случае возбуждающее перемещение не ограничено кинематически и может изменяться в зависимости от изменения жесткости нагружаемой системы, а деформация испытуемого образца — в зависимости от постепенного развития трещины усталости.  [c.36]

Червячно-винтовая передача необратима. Выходная жесткость передачи возрастает с увеличением передаточного отношения. Однако его увеличение влечет за собой повышение кинематических погрешностей (неравномерность скорости) и препятствует расширению диапазона регулирования скоростей движения активного захвата. Поэтому обычно диапазон регулирования скоростей в машинах с механическим возбуждением находится в пределах 3—4 порядков и в исключительных случаях достигает 5—6 порядков. Для расширения диапазонов регулирования непосредственно приводом используют следящие гидропередачи. Наилучшими регулировочными параметрами (идеально жесткая скоростная характеристика в пределах мощности) обладают синхронные следящие гидропередачи.  [c.175]

Неподвижная промежуточная втулка придает агрегату ряд важных конструктивных особенностей. Прежде всего упрощается цепь прецизионных сопряжений, что позволяет повысить плотность посадок распределительного механизма дробления. Далее, потоки в отверстиях неподвижной втулки имеют постоянное направление и позволяют применить комбинированное клапанно-золотниковое распределение. Обе особенности, помимо повышения частоты и мощности возбуждения, позволяют снизить уровень шума и кинематических помех роторного возбуждения. Последнее вытекает непосредственно из значения потока, знаменатель амплитудного множителя в котором содержит произведение двух величин порядка рп. Для исключения составляющих при нулевых k или р в гармониках наложений необходимо, чтобы сочетание четных и нечетных значений й и р сводило к нулю фильтрующий множитель sin (1 - -+ ри + M-4 - Для 2(i,4a = я такое сочетание дают нечетные п и Цо. Однако в этом случае сочетание нечетных k и р и, в частности, их значение, равное единице, приводят к действующему значению фильтрующего множителя. Для уменьшения нейтрализации первых гармоник разных знаков в сомножителе (1 + рп + не-  [c.239]

Вместе с тем из практики известно, что при определенном характере возбуждения динамические ошибки сбалансированного механизма могут достигать заметной величины даже при пренебрежимо малых зазорах в кинематических парах. Для того чтобы рассмотреть это явление, обратимся к анализу влияния сил сухого трения на движение механизма в случае поступательно-круговой вибрации его стойки.  [c.210]

Активная составляющая нагрузочного момента зависит от вида возбудителя и определяется активной составляющей сопротивления колебательного контура Re Z. Потерю устойчивости процесса возбуждения следует ожидать в зонах отклонения от монотонности функций Л/ я(со) и Мра (со). По Характеру этих функций видно, что такие отклонения вполне могут появиться в выражениях Re Z (со), Re Y (со) и целиком определяются характером внешней нагрузки и зависят от ее способности к потреблению активной анергии возбудителя. Таким образом, оценка склонности колебательной системы к неустойчивости сводится к определению способности системы потреблять активную энергию возбуждения. Как видно из выражений (4) и (6), эта способность за висит от значений и характера диссипативного сопротивления контура, его расположения по отношению к другим элементам контура и различна для силового и кинематического способов возбуждения. На рисунке представлены модели для случаев вязкого трения (коэффициент к). При моделировании могут быть учтены и силы внутреннего трения упругих систем (коэффициент кс) [4]. Непосредственное использование коэффициентов кс возможно лишь для моделей 2 и 5. В моделях 1, 3, 4 ж 6—8 коэффициенты кс могут быть введены при выделении парциальных контуров из более сложной системы.  [c.18]

Возмущающая сила центробежного вибратора (1) была принята не зависящей от состояния внешней цепи, что не вносит больших погрешностей в случае малых значений массы дебаланса гпр, имеющих место при высокочастотном возбуждении. Для низкочастотных диапазонов Мр становится сравнимой с колеблющимися массами внешней цепи, и схемы возбуждения приобретают кинематический характер.  [c.21]

В случае кинематического возбуждения путем задания движения точек сис1емр>1 по гармоническому закону, как было показано, //=// я и  [c.461]

Существенное различие этих случаев состоит в том, чго при силовом возбуждении Я не зависит ог круговой часготы р. При кинематическом возбуждении заданием движения z = z(j sin (/ / +5) точки А оно пропорционально р , а при возбуждении заданием скорости z = ZoSin(/ r + 5) ючки А-пропорциопально р. Силовое возбуждение жвивалептно возбуждению путем задания ускорения точки А.  [c.448]

В большинстве случаев масса одного из тел системы — источни ка или объекта — существенно превышает массу другого тела — соответственно объекта или источника. Тогда движение тела боль шой массы может считаться не зависящим от движения тела ма лой массы. Если., в частности, большую массу имеет объект то его обычно считают неподвижным движение системы вызывает ся в этом случае приложенными к источнику внешними силами представляющими силовое возбуждение F = FH) (рис. 10.11, б) Если большую массу имеет источник, то закон его движения = i(/) можно считать заданным это движение играет роль кинематического возбуждения объекта (рис. 10.11, в). В обоих случаях тело большой массы называют несущим или основанием, тело малой массы — несомым.  [c.283]

На рис. 33.1,6 показана масса т, возбуждение которой осуществляется перемещением л основания по гармоническому закону л = Со81пшв и называется кинематическим возбуждением. Можно показать, что и в этом случае передача колебаний от основания к объекту характеризуется коэффициентом и, определяемым по формуле (33.10).  [c.410]


Практическая ценность изложенной инженерной методики подбора параметров блока виброизоляции по максимальному кинематическому возбуждению состоит в том, что она позволяет еще в процессе проектирования агрегатов, когда их динамические свойства неизвестны, произвести предварительную оценку оптимальных параметров двухкаскадного амортизатора-антивибратора и оценить прочность его упругих элементов, т. е. позволяет с чего-то начать конструктивную разработку блоков инерционной виброзащиты для сложных упругих вибрирующих объектов. Можно думать, что практически именно эта методика найдет широкое применение, так как во многих случаях коррекция будет невелика или просто материально затруднена из-за необходимости постановки довольно емких экспериментов на объектах, которые уже построены. Особенно важной эта методика может явиться при конструировании стандартизированных автономных виброза-щитных инерционных блоков, изготовляемых вне зависимости от частных видов упругих машин и упругих фундаментов подобно тому, как сейчас изготовляются простые амортизаторы, эти блоки должны быть настраиваемыми , т. е. процесс проектирования виброзащитной системы следует разбить на два этапа предварительный процесс проектирования виброзащитной системы и окончательный.  [c.383]

Прежде всего остановимся на виброизоляторах. Различают активную и пассивную системы виброизоляцин. В активной системе виброизоляторы устанавливаются под объектами, которые являются источниками вибрации (например, под двигателями) и служат для защиты основания от возмущающих сил Р(/)(рис. IV. 29, а). В противоположность этому пассивная система служит для защиты тех или иных объектов (приборов, прецизионных станков и т. д.) от возможных колебаний основания / ( ), т. е. от кинематического возбуждения (рис. IV.29, б). Во всех случаях необходим расчет виброизоляции применение виброизолирующих устройств без расчета не допускается, так как случайная, необоснованная установка упругих элементов может принести не пользу, а вред. При виброизоляцин быстроходных машин требуется, чтобы (л1р 4 при этом коэффициент динамичности оказывается меньшим, чем /15. При активной виброизоляции тихоходных машин (с частотой вращения меньше 500 об/мин) разрешается как исключение принимать р < 1/8. С этой целью под корпус изолируемой машины или под постамент, на котором укрепляется машина, вводится система упругих элементов, которыми обычно являются стальные пружины или рессоры либо резиновые элементы. Для того чтобы предотвратить появление больших колебаний при переходе через резонанс (при пуске или остановке машины), может оказаться необходимым введение трения в систему. Применяются принципиально равноценные ва-  [c.238]

Изменение параметров технического состояния машин в ряде случаев сопровождается увеличением уровня колебательной энергии (Ниже, когда иет необходимости различать механизм, машину и агрегат, для простоты их будем называть машиной). Для машин, уровень шума которых имеет существенное значение, превышение определенного уровня вибрации или излучаемой акустической энергии можно считать отказом по виброакустическим показателям В этом случае первой задачей вибро-акустической диагностики машин является локализация источников повышенной виброактивности. Она позволяет определить относительную роль каждого источника в создании общей вибрации. На ее основе строят математическую модель механизма и устанавливают особенности кинематики рабочего узла или протекающего в нем процесса, приводящ,ие к возникновению повышенной вибрации Источник вибрации может быть протяженным (например, многоопорныи ротор) Тогда возникает необходимость дополнительного исследования пространственного распределения динамических сил и кинематических возбуждений, возникающих в данном узле. Наиболее распространенными способами выявления и локализации источииков является сравнение вибрационных образов (во временной и частотной областях) машины в целом и отдельных ее узлов Когда виброакустические образы нескольких источников подобны, полезно анализировать потоки колебательной энергии через различные сечения механизмов, динамические силы, действующие в различных сочленениях, а также статистические характеристики процессов (функции корреляции, взаимные спектры, модуляционные характеристики и т д,). В связи с тем. что силовые и кинематические возбуждения в узлах н вибрация машины в целом зависят не только от интеисивности рабочих процессов, но и от динамических характеристик конструкций, для выявления причин повышенной вибрации следует измерять механический импеданс и подвижность различных узлов — статорных и опорных узлов механизмов, машин, агрегатов, а также фундаментных конструкций Способы выявления источников повышенной виброактивности механизмов. Наиболее распространенный способ выявления — сопоставление частот дискретных составляющих измеренного спектра вибрации с расчетными частотами возбуждений, действующих в рабочих узлах механизмов В табл. 1 пре ставлены сводные формулы частот дискретных составляющих вибрации и возбуждающих сил некото рых механизмов. Спектры вибрации измеряют на нескольких скоростных режимах работы механизма, что позволяет более надежно сопоставить расчетные частоты с реальным частотным спектром вибрации Кривые зависимости уровней конкретных дискретных составляющих вибрации от режима работы механизма дают возможность выявить резонансные зоны.  [c.413]

Задача Лэмба и задача о кинематическом возбуждении являются в определенном смысле предельными случаями по соотношению волновых сопротивлений возбудителя и среды в реально возникающих ситуациях о генерировании волнового поля. Однако получающаяся при этом вилка настолько широка, что целый ряд важных вопросов практического возбуждения волн в упругих телах на основе рассмотрения таких предельных случаев получает лишь качественное решение [201. Например, задача о возбуждении поля пьезоактивным преобразователем, волновое сопротивление которого  [c.80]

В рассмотренных выше случаях колебания систем возбуждались заданными возмущающими силами. Часто, однако, имеет место кинематическое возбуждение колебаний, когда заданной функцией времени являются не силы, а смещения той или иной точки системы. Примерами такого рода возбуждения являются, например, колебания каких-либо приборов, смонтированных на вибрирующих установках (см. главу IX, 2), колебания виброщупов [7] и т. п.  [c.278]

В некоторых случаях вынуждопные колебания возникают Б результате кинематического возбуждения, т. е.  [c.9]

Мягкое нагрг/жение — возбуждение динамических нагрузок, при котором заданной величиной является нагрузка, практически постоянная на всем протяжении испытания. В этом случае перемещение кинематически не ограничено и может изменяться в зависимости от изменения жесткости нагружаемой системы в период нарастания усталостных повреждений и постепенного развития усталостной трещины.  [c.18]

Жестким возбуждением динамических нагрузок считают такое, при котором заданной величиной является кинематически ограниченное возмуш,а-ющее перемещение, постоянное на всем протяжении испытания либо программируемое по определенному закону. В этом случае возбуждающее усилие изменяется в зависимости от изменения жесткости нагружаемой системы, а реакция испытуемого образца — в зависимости от изменения его жесткости в связи с образованием и ростом трещины усталости.  [c.36]

Введение второй массы в динамическую схему машины с кинематическим приводом (схемы 5 и 6) позволяет улучшить виброизоляцию. При лом, как и в одномассных машинах, работа в резонансном или околорезонансном режиме обеспечивает хорошие коэффициенты усилия вынуждающей силы. Применяются и двухмассные резонансные машины с дебалансным возбуждением (схема 7). Введение второй массы в схемы машин в большинстве случаев не оказывает заметного влияния на увеличение массы и габаритных размеров всей установки вторую массу используют либо как второй рабочий орган, либо как вспомогательное вибрирующее устройство питающее илн, наоборот, отводящее материал и т. п.  [c.141]



Смотреть страницы где упоминается термин Случаи кинематического возбуждения : [c.173]    [c.245]    [c.381]    [c.154]    [c.316]    [c.65]    [c.25]    [c.160]    [c.103]   
Смотреть главы в:

Введение в теорию механических колебаний  -> Случаи кинематического возбуждения



ПОИСК



Возбуждения

Кинематическое возбуждение



© 2025 Mash-xxl.info Реклама на сайте