Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитного давления параметр

Рис. 13.17. Ударные адиабаты магнитогазодинамической волны при разных величинах параметра магнитного давления (к = 5/3) Рис. 13.17. <a href="/info/19688">Ударные адиабаты</a> магнитогазодинамической волны при разных величинах параметра магнитного давления (к = 5/3)

Кривые М] (т) при разных значениях параметра магнитного давления q приведены на рис. 13.19.  [c.237]

Система—магнетик Bo внешнем магнитном поле. Параметры системы напряженность магнитного поля Н, магнитный момент магнетика М и температура Т. Если при намагничивании веш,е-ства объем и давление его остаются неизменными, то Y = —Н, к = М, = — Н dM (уравнение (3)). Дифференциалы от характеристических функций и сами функции в этой системе получают следующие значения  [c.91]

Сейчас государственные эталоны имеются во всех важнейших областях измерений, наиболее широко применяемых в народном хозяйстве страны. Это государственные эталоны единиц длины, массы, температуры, времени, силы света и электрического тока, т. е. единиц основных физических величин. Государственные эталоны созданы и для таких областей измерений, как измерения силы, давления, ряда электрических и магнитных величин, параметров оптических, ионизирующих излучений и др.  [c.152]

В своем капитальном труде Н. С. Курнаков рассматривает измеримые физические свойства веществ, применяемые в физико-химическом анализе. Общее число таких свойств достигает 30. Среди них тепловые свойства — плавкость и растворимость, теплота образования, теплоемкость, теплопроводность электрические свойства — электрическое сопротивление, электродвижущая сила, термоэлектрическая сила, диэлектрическая проницаемость объемные свойства — удельный вес и удельный объем, объемное сжатие, коэффициент теплового расширения. При физико-химическом анализе измеряются также основные оптические свойства объектов исследования, свойства, основанные на молекулярном сцеплении (вязкость, твердость, давление истечения, поверхностное натяжение и др.)) магнитные свойства и многие другие. В физико-химическом анализе широко применяется изучение микроструктуры систем, позволяющее определить их фазовый состав. В последние десятилетия физико-химический анализ пополнился таким важным методом исследования, как рентгенография, который позволяет установить параметры и структуру кристаллографических решеток твердых фаз изучаемой системы  [c.159]


Основными промышленными магнитомягкими материалами являются никель-цинковые ферриты. Эти материалы получили наибольшее распространение благодаря двум особенностям сравнительно простой технологии изготовления и высоким магнитным параметрам. Технология изготовления никель-цинковых ферритов аналогична принятой при производстве керамических изделий. Полученные в результате прессования полуфабрикаты обжигаются в воздушной среде при нормальном давлении.  [c.39]

Параметры оптимизации в зависимости от цели, для которой они предназначены, могут быть пространственными и временными (длина, время, площадь, объем, скорость, ускорение и т. д.) механическими (масса, плотность, сила, момент силы, работа, энергия, мощность, давление и т. д.) электрическими и магнитными (количество электричества, плотность электрического тока, удельное сопротивление, магнитный поток и т. д.) тепловыми (температура, количество теплоты, тепловой поток, коэффициент теплообмена и т. д.) акустическими (звуковое  [c.94]

Требования к нормальным условиям измерений, установленные в государственных стандартах и другой нормативной документации, отличаются большой пестротой. Результаты анализа стандартизованных нормальных значений и областей влияющих величин по средствам и методам измерений пространства, времени, механических величин, температур и тепловых величин, расходов, электрических и магнитных величин, физико-химических, оптических, светотехнических, акустических параметров и ионизирующих излучений показывают, что даже для температуры, влажности, давления в разных документах установлены различные номиналы. В ряде стандартов нормальные области значений влияющих величин дифференцированы по точности средств и методов измерений. В этом отношении наиболее подробными и полными документами являются ГОСТ 8.050—73, геи Нормальные условия линейных и угловых измерений , ГОСТ 12997—76, ГСП Общие технические требования , ГОСТ 22261—76, Средства измерений электрических величин .  [c.18]

Магнетик в магнитном поле. При помещении магнетика в магнитное поле он намагничивается, т. е. внешний параметр—напряженность магнитного поля—изменяет состояние системы. В этом примере внутренними параметрами будут температура, объем, давление и магнитный момент магнетика.  [c.8]

Предназначен для применения в схемах автоматического регулирования давления, уровня, разрежения, расхода и других параметров, а также их соотношения, замеряемых первичными приборами с дифференциально - трансформаторными датчиками. Обеспечивает суммирование сигналов переменного тока и их усиление до значения, необходимого для управления электрогидравлическим реле или магнитным пускателем., Выходное (управляющее) напряжение 24 В постоянного тока. Максимальное количество подключаемых первичных приборов 3  [c.784]

Как видно из (4.35), высокие удельные параметры Аг-лазера возможны лишь при высоких плотностях токов, т. е. при использовании дуговых разрядов. Это обстоятельство сказывается на конструкции ионных лазеров. Для обеспечения однородного сильноточного разряда разрядную трубку приходится делать в виде достаточного тонкого капилляра. Иногда для достижения максимальной концентрации заряженных частиц разрядный капилляр помещают в продольное магнитное поле. Ряд проблем возникает в Аг-лазерах из-за эффекта переноса ионов Аг" " от анода к катоду. В результате этого вдоль разрядной трубки образуются большие градиенты давления и для ликвидации их приэлектродные области разряда приходится соединять длинной обводной трубкой, по которой газ возвращается обратно в прианодную зону. Однако основная проблема создания мощных Аг-лазеров заключается в преодолении высоких тепловых нагрузок. Для получения излучения мощностью 10 Вт необходимо подвести к трубке 10 кВт электрической энергии. Температура ионов в разряде составляет при этом 3000 К. Это приводит к серьезному усложнению конструкции и сокращению ресурсных характеристик ионных лазеров.  [c.161]


Перейдем к обзору инженерных конструкций. Наиболее опасными с точки зрения механики трещин следует признать крупные сооружения, имеющие обширные области равномерного распределения напряжений всякого рода строительные оболочки-мембраны, сферические и цилиндрические сосуды под внутренним давлением, сварные корпуса крупных морских судов и т. п. Именно для этих конструкций, в первую очередь, разрабатываются нормы проектирования, гарантирующие от опасности трещинообразования. Вспомним любопытный инженерный прием, когда в условиях простого или двухосного растяжения вместо одного толстого листа используют два-три тонких, имеющих суммарную толщину, равную или даже меньшую, чем исходная. Здесь, в сущности, используется закон увеличения характеристики Кс с уменьшением толщины листа. Рассмотрим другую инженерную проблему определение допускаемого размера какого-либо дефекта внутри крупной металлической отливки или поковки. Речь необязательно идет о раковине или трещине. Последние, кстати, достаточно надежно выявляются современными методами диагностики ультразвуковыми, рентгеновскими, магнитными и др.). С помощью подобного рода аппаратуры могут регистрироваться те или иные нарушения сплошности материала по какому-либо физическому параметру, хотя трещины в обычном понимании нет. Подобные дефекты иногда рассматриваются в качестве трещин в расчетах на трещиностойкость.  [c.433]

Состояние любой термодинамической системы может быть охарактеризовано термодинамическими параметрами, которые подразделяются на два класса — интенсивные и экстенсивные. Интенсивными называются параметры, не зависящие от количества вещества в системе (температура Т, давление Р, напряженность магнитного поля Н и т.п.). Они определяют состояние вещества. При отсутствии внешних воздействий состояние чистого вещества однозначно определяется заданием двух независимых интенсивных параметров. Экстенсивными называются параметры, характеризующие свойства, зависящие от количества вещества в системе. Примером экстенсивных свойств может служить объем V, который пропорционален количеству вещества. Отнесенные к единице количества вещества экстенсивные свойства приобретают смысл интенсивных  [c.9]

Определены потери полного давления при различных значениях параметра магнито-газодинамического (МГД) взаимодействия, начального числа Маха и разной геометрии магнитного поля и показано, что необратимые потери при МГД-торможении сверхзвукового потока достигают значительной величины.  [c.386]

Общая система уравнений приводится к безразмерной форме. Координаты отнесены к радиусу трубы У, скорость и плотность — к скорости VQ и плотности PQ потока во входном сечении, давление, энергия и энтальпия, температура, динамическая вязкость, турбулентная вязкость z/г, интенсивность магнитного поля, электропроводность отнесены к величинам ро 02, Vo2, VQ /R, / о, р>о/ ро, и 0"(ь соответственно. В результате возникают следующие безразмерные параметры  [c.390]

Рис. 13.19. Зависимость скорости за магнитогааодинамической ударной волной от степени сжатия газа при разных величинах параметра магнитного давления к = 5/3) Рис. 13.19. Зависимость скорости за магнитогааодинамической <a href="/info/18517">ударной волной</a> от <a href="/info/833">степени сжатия</a> газа при разных величинах параметра магнитного давления к = 5/3)
Радиотехническими, электрическими и магнитными величинами занимается также СНИИМ. ВНИИМС специализируется на геометрических и электрических величинах, давлении, параметрах электромагнитной совместимости.  [c.519]

Параметр магнитного давления (число Альфвена) 53  [c.550]

Сварку давлением без подогрева выполняют, как правило, с высокоинтенсивным силовым воздействием. К этим видам относятся сварка взрывом, холодная, магнитно-импульсная и др. Ультразвуковая сварка относится к сварке без подогрева при низкоинтенсивном внешнем силовом воздействии. Параметры этих видов сварки (давление, температура нагрева, время нагрева, удельное давление, интенсивность приложения давления и температуры) зависят от свойств соединяемых материалов, состояния их поверхностей, конструктивных особенностей и т. д.  [c.114]

Рассмотрим прибор, реализующий принцип Гопкинсона. Он состоит из цилиндрического длинного стержня А определенного диаметра, подвешенного в горизонтальном положении на четырех нитях и способного совершать колебания в вертикальной плоскости. К одному концу стержня А прижат цилиндрический стержень В, называемый хронометром, к другому концу стержня прикладывается импульсивная нагрузка (давление при ударе или взрыве). Хронометр изготовлен из того же материала, что и стержень Л, имеет одинаковый с ним диаметр. Один торец хронометра и концевое сечение стержня А, к которому он прижат, притерты хронометр удерживается магнитным притяжением или нанесением тонкого слоя смазки на притертые поверхности. Такой прибор использовался Гоп-кинсоном при изучении удара снаряда в преграду. С помощью баллистического маятника замеряется количество движения хронометра, затем, используя приведенные зависимости, можно определить напряжение и другие параметры. Описанное устройство, называемое мерным стержнем Гопкинсона, имеет два существенных недостатка 1) используя его, можно определить только продолжительность импульса Т и значение и нельзя выяснить вид кривой о (/) 2) растягивающее усилие, необходимое для нарушения контакта лгежду стержнем и хронометром, мешает использовать прибор для измерений импульсов малой амплитуды.  [c.20]


В литературе можно найти многочисленные примеры исследования влияния давления на параметры индуктивных элементов. Индуктивность компонентов, содержащих железный порошок в пластиковой матрице, обычно пропорциональна давлению, однако эти изменения не носят постоянного характера. Единственный описанный в литературе случай существенного остаточного изменения параметров в результате воздействия давления связан со специальным сердечником из материала с ориентированной зеренной структурой и с прямоугольной петлей гистерезиса. Сведения о влиянии давления на элементы устройств магнитной памяти в литературе найти не удалось, но можно предположить, что такие компоненты будут выходить из строя при однократном повышении давления, поскольку в них используются материалы, аналогичные применяелйлм в ориентированных сердечниках с прямоугольной петлей гистерезиса.  [c.482]

В качестве датчиков обратной связи в системе регулирования используют микрофоны 13, устанавливаемые в контрольных точках бокса. Для ввода в систему регулирования сигналы, поступающие от микрофонов, усиливаются и усредняются и, пройдя коммутатор 16, поступают в полосо вой анализатор спектра 15, аналогичный по составу анализатору устройства 9. Пройдя среднеквадратический детектор 17 уровни сигнала в полосах с помощью мини-ЭВМ сравниваются с заданными уровнями, в результате чего вырабатывается сигнал корректировки, поступающий на усилители задающих фильтров устройства 9, благодаря чему автоматически поддерживается уровень звукового давления в камере. Достаточно хорошее приближение к заданным характеристикам акустического нагружения можно получить при использовании десяти микрофонов. Одно из основных достоинств такой автоматической системы регулирования — быстрота настройки на требуемый режим испытания объекта. Однако необходимый объем информации об условиях акустического нагружения объекта испытаний и поведения его при воздействии акустического поля требует значительно большего числа измеряемых параметров. Обычно требуется измерять звуковое давление, деформацию и вибрацию. Для этого в комплекс технологического оборудования (рис. 4) камеры включают систему сбора, измерения и обработки данных. Эта система позволяет контролировать средние квадратические значения измеряемых величин в ходе эксперимента, регистрировать процессы на магнитной ленте и затем обрабатывать их на анализаторах с высокой разрешающей способностью. Как показано на схеме, сигналы от соответствующих датчиков перед входом в усилитель при помощи устройств 4, 5 проверяются на отсутствие помех и неисправностей измерительных цепей. С выхода каждого из усилителей 6 сигнал подается на квадратичный вольтметр 13, показания которого фиксируются на цифропечатающем устрой-  [c.449]

Весьма важны исследования влияния принятых ограничений на зоны допустимых значений для некоторых зависимых параметров. Так, представляют интерес для конструкторских разработок данные о взаимном влиянии между величиной конечной проводимости 0 2 и характеристиками МГД-генератора при наличии ограничений на ряд параметров. Для соответствующих исследований была использована часть модели, описывающая камеру сгорания, сопло, МГД-генератор и диффузор. В качестве исходных данных были приняты следующие мощность МГД-генератора Л мгд-г = 500 Мет, скорость плазмы в МГД-канале U = S50 м/сек, индукция магнитного поля В = 5 тл, коэффициент электрической нагрузки = 0,8, приалектродное падение потенциалов Удр = 60 в, сечение канала МГД-генератора — квадратное, ширина электродной секции в = = 6 см, температура стенки канала МГД-генератора Т% = 1200° К, давление за диффузором рзд = 1,05 ата, к.п.д. диффузора (по давлению) -цд = 0,8, горючее — метан, окислитель — воздух, обогащенный кислородом.  [c.129]

Измерения Д. (механические, электрические, магнитные и др.) основаны на прямом или косвенном измерении расстояний между фиксиров, точками тела или порождаемых Д. эффектов (оптических, пьезоэлектрических и т. п.). Количественные характеристики Д. являются существ, параметрами термомеханич. состояния вещества и используются в расчётах прочностных характеристик конструкций, усилий и течения вещества при обработке металлов давлением и др.  [c.599]

МАГНИТНЫЙ ФАЗОВЫЙ ПЕРЕХОД — фазотй переход, при к-ром изменяется магн. фаза, т. е. мак-роскопич. состояние всей или части магн. подсистемы твёрдого тела (см. Магнетизм). Магн. фазы характеризуются параметрами магнитного упорядочения, по их изменению идентифицируются фазовые переходы. М. ф. п. могут быть обусловлены изменением только темп-ры Т (с н о н т а к н ы о М. ф. п.), давления Р или внеш. магн. ноля Н (индуцированные М. ф. п.), концентрации магн. ионов X (концентрационные М. ф. п.) и др. термодинамич. параметров. Различают М. ф. п.  [c.690]

Лит. Шафранов В. Д., Равновесие плазмы в магнитном поле, в сб. Вопросы теории плазмы, в. 2, М., 1963, с. 92 Арцимович Л. А,, Сагдеев Р. 3., Физика плазмы для физиков, М., 1979, гл. 2, 9 К а д о м ц е в Б. Б,, Коллективные явления в плазме, М., 1988, гл. 1, 3. В. Д. Шафранов. РАВНОВЕСИЕ СТАТИСТИЧЕСКОЕ — состояние замкнутой сгатистнч, системы, в к-ром ср. значения всех физ. величин и параметров, его характеризующих (напр., темп-ры и давления), не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же важную роль, как равновесие термодинамическое в термодинамике. Р. с. не является обычным равновесием в механич. смысле, т. к. в системе постоянно возникают малые флуктуации физ. величин около их ср. значений равновесие является подвижным, или динамическим. В статистич. физике Р. с, описывают с помощью разл. Гиббса распределений (микро-канонич., кавович. и большого канонич. распределения) в зависимости от типа контакта системы с окружающей средой (термостатом), запрещающего или разрешающего обмен с ней энергией или частицами. Статистич. физика позволяет описать также флуктуации в состоянии Р. с.  [c.195]

Магнитогидродинамнческие У. в. распространяются в электропроводящем (ионизованном) газе в присутствии внеш. магн. поля. Их теория строится на основе ур-ний магнитной гидродинамики. Соотношения типа ( ) с учётом магн. сил дополняются условиями, к-рым подчиняются электрич. и магн. поля на границе двух сред. Магн. эффекты проявляются тем сильнее, чем больше отношение магн. давления H lSn к давлению газа, где Н—напряжённость магн. поля. Благодаря дополнит, параметрам и переменным, характеризующим величину и направление магн, поля по обе стороны разрыва, магнитогидродинамич. У. в. отличаются большим разнообразием свойств по сравнению с обычными У. в.  [c.210]

Рис. 2.3. Динамические параметры магнитного импульсного прессования нанокристаллического оксида п—AljOj изменения давления прессования р, скорости сжатия (усадки) V и плотности р за время прохождения импульсной волны сжатия Рис. 2.3. Динамические параметры <a href="/info/410009">магнитного импульсного прессования</a> нанокристаллического оксида п—AljOj изменения <a href="/info/409910">давления прессования</a> р, <a href="/info/44595">скорости сжатия</a> (усадки) V и плотности р за время прохождения импульсной волны сжатия
Фазовая диафамма изображает зависимость устойчивого фазового состояния одно- или многокомпонентного вещества от термодинамических параметров, определяющих это состояние (температуры, давления, напряженностей электрических и магнитных полей и др.) Диафв.мма состояния представ.тяет собой фафическое изображение соотношений между параметрами состояния системы и ее составом. Для двухкомпонентных систем обычно строят фазовые диафаммы в координатах температура - состав (при постоянном давлении).  [c.32]


Известны две разновидности сварки давлением без нагрева (сварка взрывом, импульсом магнитной энергии, холодная сварка) и с нагревом (кузнечная, ультразвуковая, трением, диффузионная, высокочастотная, газопрессовая и контактная сварка). Природа образования соединения во всех случаях сварки как с нагревом, так и без него одна это результат взаимодействия между активированными атомами соединяемых поверхностей. Различают три стадии процесса образования соединения при сварке давлением. На первой стадии образуется физический контакт, происходит активация поверхностей, которые сближаются ка параметр кристаллической решетки, преодолевая энергетический барьер, но сохраняют устойчивое состояние, не сливаясь. На второй с т а д и и образуется химическое соединение активированных поверхностей, происходит сварка - сближение атомов на расстояние межатомарного взаимодействия. Ширина границы раздела становится соизмеримой с шириной межзеренной границы, прочность соединения становится соизмеримой с прочностью основного металла. Н а третьей стадии происходит диффузионный обмен масс через объединенную поверхность соединения. При этом вновь полученная поверхность раздела размывается или расчленяется продуктами взаимодействия.  [c.255]

Пуск котла (при включенном электрическом питании и отсутствии сигналов, фиксирующих аварийное состояние какого-либо параметра или предельное состояние основного параметра — температуры воды или давления пара) осуществляют нажатием кнопки Пуск . После этого исполнительным механизмом осуществляется полное открытие регулирующих органов топлива и воздуха (об этом судят по показаниям указателя положения), включаются магнитные пускатели первичного воздуха (только при работе котла на мазуте) и вторичного воздуха, включается отсчет времени предварительной вентиляции. По истечении времени предварительной вентиляции (120 24 с) автоматика выдает сигнал на исполнительный механизм, прикрывающий воздушную заслонку и регулирующий заслонку на подаче топлива до 20% открытия, подается напряжение на катушку зажигания Б-1 и на клапаны запальника. Если в течение времени 10 2с не произойдет розжиг запальника, появляется сигнал Авария , включаетсяпослеостановоч-ная вентиляция, обесточиваются клапаны запальника и катушка зажигания. Продолжительность послеоста-новочной вентиляции 60 12 с, после чего обесточиваются цепи магнитных пускателей вентиляторов.  [c.167]

Если в процессе нормальной работы или в пусковом периоде в управляющее устройство поступит сигнал об аварийном состоянии какого-либо параметра, загораются сигнал Авария и индикаторная лампочка, соответствующая первопричине аварии, а также индикаторная лампочка Послеостановочная вентиляция (за исключением аварии по понижению давления первичного или вторичного воздуха, поскольку в этом случае цепи магнитных пускателей вентиляторов обесточиваются). Одновременно обесточиваются цепи управления клапанами — отсекателями топлива, что сопровождается погасанием ламп Работа и Факел регулирующие органы топлива и воздуха перемещаются в положение 20% -ного открытия (за исключением аварии по понижению давления первичного и вторичного воздуха). Как только истечет время послеостановочной вентиляции, обесточиваются цепи управления магнитными пускателями вентиляторов, о чем свидетельствует погасание индикаторной лампочки Послеостановочная вентиляция . Снятие сигнала Авария осуществляется нажатием кнопки Стоп .  [c.169]


Смотреть страницы где упоминается термин Магнитного давления параметр : [c.551]    [c.53]    [c.20]    [c.434]    [c.302]    [c.160]    [c.683]    [c.416]    [c.260]    [c.171]    [c.239]    [c.256]    [c.27]    [c.67]    [c.7]    [c.187]    [c.284]    [c.155]    [c.82]   
Механика электромагнитных сплошных сред (1991) -- [ c.302 ]



ПОИСК



Давление магнитное

Параметр магнитного давления (число



© 2025 Mash-xxl.info Реклама на сайте