Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спутник искусственный Земли солнечный

Искусственный спутник облетает Землю, находясь на ее дневной стороне. Спутник имеет форму шара. Поглощательная способность поверхности спутника для падающего солнечного излучения А, а ее степень черноты е.  [c.189]

При полете станции в поле лунного тяготения ее траектория отклонилась в сторону Луны, а скорость несколько увеличилась. На расстоянии 1 000 000 км от центра Земли станция вышла из сферы действия гравитационного поля Земли, и ее дальнейшее движение стало определяться полем тяготения Солнца советская станция Луна-1 стала спутником Солнца — первой в мире искусственной планетой солнечной системы. Период обращения ее вокруг Солнца составляет 450 суток. Наклонение ее орбиты к плоскости эклиптики равно 1°, эксцентриситет орбиты определился равным 0,148, минимальное расстояние орбиты от центра Солнца  [c.429]


Эта задача является основной в проблеме движения планет Солнечной системы и искусственных спутников Земли, Луны и планет, так как в большинстве случаев силы взаимного притяжения планет, силы притяжения спутника Земли планетами, силы сопротивления космической среды, силы светового давления и т. п. малы по сравнению с силами гравитационного притяжения планеты и Солнца или спутника и Земли.  [c.234]

Триумфом механики второй половины XX века является создание космических кораблей и грандиозных ракет, выводящих эти корабли на орбиты искусственных спутников Земли и в глубины Вселенной, к Луне и к планетам нашей Солнечной системы.  [c.6]

Пространственные четырехзвенные кривошипно-коромысло-вые механизмы с плавающим шатуном нашли широкое применение как передаточные механизмы ткацких станков (см. кинематическую схему на рис. 4.2), а также в машинах легкой промышленности (швейных, обувных) и сельскохозяйственных. Подобный механизм применен для ориентации солнечных батарей искусственных спутников земли. В ряде случаев для проектирования таких механизмов можно ограничиться заданием четырех или пяти соответствующих положений коромысла и кривошипа, причем возникает необходимость вычисления соответственно четырех и пяти постоянных параметров.  [c.98]

В 1953 году была создана первая солнечная батарея. Для нее сразу же нашлось очень ответственное задание, но пока не на Земле, а в космосе. Уже третий советский искусственный спутник, запущенный на орбиту 15 мая 1958 года, был оснащен солнечной батареей. А теперь панели, на которых установлены эти источники энергии, стали неотъемлемой деталью конструкции любого космического аппарата. На советских космических станциях Салют солнечные батареи в течение многих лет обеспечивают энергией и системы жизнеобеспечения космонавтов, и многочисленные научные приборы, установленные на станции.  [c.183]

Выше 80 км воздух с увеличением высоты становится все более диссоциированным, а затем и ионизированным. Благодаря диссоциации и ионизации оптическая прозрачность воздуха уменьшается, и он поглощает солнечное излучение, что приводит к повышению температуры воздуха на высотах более 80 км, которое оказывается весьма значительным как показали измерения, выполненные с помощью искусственных спутников Земли, на высоте 500 км температура достигает 1680°С.  [c.177]

В настоящее время проектируются искусственные спутники с корпусом из углепластиков. Например, Национальным управлением США по аэронавтике и исследованию космического пространства (НАСА) планируется запуск космического спутника-телескопа. Этот телескоп предполагается изготовить с широким использованием углепластиков. По сравнению с лучшими наземными телескопами четкость изображения космического телескопа будет в 10 раз выше, а разрешающая способность - в 10 раз [5]. В Японии в настоящее время на основе углепластиков разрабатываются каркасы корпусов искусственных спутников Земли, скелетные конструкции солнечных батарей и т. д. [6].  [c.204]


Съемочная аппаратура ДЗЗ, устанавливаемая на спутнике, может работать в четырех основных диапазонах ультрафиолетовом, видимом, инфракрасном и микроволновом (см.Примечание на с. 20) — только в этих областях спектра земная атмосфера прозрачна для электромагнитных волн. В видимом диапазоне датчики (фотоэлементы, матрицы приборов с зарядовой связью и т.п.) регистрируют отраженное от земных покровов и прошедшее через атмосферу солнечное излучение в ИК-диапазоне превалирует собственное тепловое излучение поверхности Земли в микроволновом диапазоне используют собственное излучение планеты, либо отраженные сигналы искусственных источников облучения, установленных на борту ИСЗ. Возможности аппаратуры дистанционного зондирования в различных спектральных диапазонах существенно различаются оптические дают наиболее качественные, привычные для наблюдателя цветные изображения с высоким пространственным разрешением, синтезированные из нескольких монохроматических снимков инфракрасную съемку можно проводить в темное время суток, наблюдая температурные аномалии поверхности а для специфических случаев зондирования в микроволновом диапазоне не является помехой даже облачный покров.  [c.13]

На первых искусственных спутниках Земли, программа исследований которых была рассчитана на несколько дней или недель, в качестве источников электропитания бортовой аппаратуры использовались химические батареи. Однако химические источники энергии, имеющие сравнительно короткий срок службы (недели,) не могли удовлетворить потребности длительных космических полетов. Поэтому была начата разработка новых источников энергии, обладающих малым весом, высокой надежностью и большим ресурсом работы в условиях космического пространства. Эти исследования развивались главным образом в направлении создания солнечных элементов и радиоизотопных термоэлектрических генераторов. Разработка солнечных источников энергии проводилась в гораздо более широких масштабах и первые образцы солнечных батарей были испытаны на третьем искусственном спутнике Земли [18].  [c.182]

В 1961 г. работы по программе СНАП-1А были прекраш ены, по-видимому, из-за технических трудностей, возникших в процессе разработки проекта, а также в результате успешной эксплуатации солнечных батарей на первых искусственных спутниках Земли.  [c.191]

Бурный рост ракетных исследований космического пространства, успешные запуски пилотируемых и автоматических космических кораблей на Луну, систематическое изучение некоторых внутренних планет солнечной системы, блестящие полеты наших советских героев-космонавтов по орбитам искусственных спутников Земли привели к возникновению и необычайно интенсивному изучению новых задач механики, составляющих предмет широкой научной дисциплины, которую целесообразно назвать Динамика космического полета или, более обще, Космонавтика  [c.39]

При более точных исследованиях законов движения спутников Земли приходится учитывать гравитационные силы, обусловленные Солнцем, планетами солнечной системы и Луной. Для искусственных спутников типа американского Эхо (представляющего собой шар из весьма легкой синтетической ткани) имеет существенное значение световое давление, и эволюции орбит таких спутников оказываются весьма сложными для анализа.  [c.40]

Движение ракеты в космическом пространстве определяется законами небесной механики. Ракета для космических путешествий — это управляемый астероид. Так как плотные слои атмосфер у планет солнечной системы сосредоточены на малых (по сравнению с радиусом соответствующей планеты) высотах, то при изучении движений ракет в пределах солнечной системы при перелетах с одной планеты на другую нужно в большинстве случаев принимать во внимание только силы тяготения. Для изучения движения искусственных спутников Земли и ракет, предназначенных для достижения (или облета) Луны, в ряде случаев нужно учитывать только поле сил тяготения, обусловленное массой Земли.  [c.95]

При движении искусственного космического тела по орбите вокруг Земли и особенно вокруг Солнца на это движение может существенно влиять сила светового давления солнечного излучения. Моменты силы светового давления могут существенно влиять на движение спутника относительно центра масс.  [c.52]


Информация о действительном движении искусственного космического объекта относительно центра масс может быть получена от датчиков, установленных на борту спутника, показания которых передаются на Землю с помощью радиотелеметрии. Датчики измеряют некоторые параметры, позволяющие судить о действительном вращении спутника. С этой целью используются, например, магнитометры, измеряющие ориентацию спутника относительно магнитного поля Земли манометры и другие приборы, реагирующие на положение спутника относительно набегающего потока воздуха датчики солнечной ориентации датчики линии земного горизонта и др. Кроме того, сведения об ориентации спутников представляют радиотехнические измерения — по модуляции радиосигналов оптические измерения — по наблюдениям изменения блеска спутника и т. д.  [c.317]

Ряд научных задач, для решения которых используются искусственные спутники Земли, требует определенной ориентации спутника. К числу таких относятся задачи, связанные с исследованием Солнца, в частности по изучению солнечной радиации и корпускулярного излучения Солнца. Показания приборов, предназначенных для других исследований, часто также не безразличны к ориентации спутника относительно Солнца, и для правильной интерпретации этих показаний нужно иметь информацию о положении прибора относительно Солнца.  [c.353]

Если /Из —масса искусственного спутника, а /Пх —масса Земли, то относительную погрешность е можно только вычислить, но не измерить (так как мы не располагаем столь чувствительными приборами). Если же /Из —масса планеты, а т1 —масса Солнца, то эта ошибка для Земли равна 0,000003, а для Юпитера (самой большой планеты Солнечной системы) —0,001.  [c.177]

Раз открытый закон механического движения неизменно и вполне определенно проявляет себя в самых разнообразных частных задачах. Например, можно наблюдать, объяснить и проверить справедливость теоремы площадей и при движении шарика на нити, и при движении искусственных спутников Земли, и при движении планет солнечной системы. Механика учит не только видеть мир, но и понимать его.  [c.16]

Действие солнечного светового давления аналогично действию сопротивления атмосферы. Для искусственных спутников Земли световое давление является возмущающим воздействием. Однако для космических аппаратов (в частности, для искусственных спутников Солнца), движущихся достаточно далеко от Земли и планет по почти круговым орбитам, световое давление может быть использовано для целей стабилизации аппарата на Солнце.  [c.301]

К вентильным фотоэлементам относятся также серно-таллиевые, серно-серебряные, германиевые и кремниевые фотоэлементы. Кремниевые фотоэлементы с коэффициентом преобразования лучистой энергии, достигающим десятка у,,, получили название солнечных батарей и могут уже служить источником питания радиоаппаратуры. Подобные фотоэлементы были установлены на третьем советском искусственном спутнике Земли, Серно-таллиевые, германиевые и некоторые другие полупроводниковые фотоэлементы видят в невидимой  [c.308]

Полупроводники широко используют в электронике и энергетике. Применение полупроводников в области электроники, и особенно радиоэлектроники, открыло большие перспективы создания электронного оборудования новых типов и дало возможность решить многие сложные проблемы. В области энергетики полупроводниковые элементы применяют для преобразования тепловой, световой и атомной энергии в электрическую. Примером могут служить солнечные батареи, успешно используемые на искусственных спутниках Земли и многочисленных наземных установках. Полупроводники успешно применяют в малогабаритных и мощных выпрямительных элементах, рассчитанных на сотни и тысячи киловатт и обладающих высокой надежностью и механической устойчивостью.  [c.180]

Одним из самых изящных решений в этой области является использование в качестве датчика яркости пламени миниатюрного элемента солнечной батареи из тех, что применяются на искусственных спутниках Земли для преобразования лучистой солнечной энергии в электрический ток питания аппаратуры. Дело в том, что подобный элемент хорошо улавливает и преобразует в колебания электрического тока не только низкочастотные пульсации, видимые глазу, но и сравнительно высокочастотные, вплоть до десятков килогерц (т. е. даже в звуковом и ультразвуковом диапазонах). А эти последние едва ли не в большей степени определяют наилучший режим горения, чем колебания на низких частотах.  [c.26]

В предыдущей главе мы рассматривали задачу о движении пассивно действующей материальной точки, находящейся под действием заданных сил, исходящих от неподвижных центров. Мы упомянули также, что представляет интерес рассмотреть еще более общую задачу, предполагая, что пассивная точка движется под действием активных масс, каждая из которых обладает заданным движением. Такие задачи называются в небесной механике — ограниченными задачами. Число активно действующих масс вообще может быть каким угодно. Например, прп изучении полета космического корабля (искусственного небесного тела ) в пределах Солнечной системы мы, естественно, можем считать, что это искусственное тело не оказывает никакого влияния и воздействия на планеты и их спутники. Движение планет мы можем считать заданным, так как эта задача издавна изучается в небесной механике, и мы знаем и свойства их движения и умеем рассчитывать их положения и скорости при помощи аналитических или хотя бы численных методов. Более того, так как планеты Солнечной системы движутся почти в одной плоскости и почти по круговым орбитам, то мы можем считать (по крайней мере в течение не очень большого промежутка времени), что активные тела в рассматриваемой модельной задаче движутся по окружностям, лежащим в одной плоскости. Такого рода задачи называются круговыми ограниченными задачами. Например, можно рассматривать в первом приближении движение Луны под действием притяжения Земли и Солнца, считая, что Луна не оказывает на Солнце и Землю никакого влияния.  [c.209]


Отметим, что тело М, вызывающее гравитационное поле в рассматриваемой задаче, может иметь весьма различный вид. Это может быть одно тело в собственном смысле этого слова, например, какая-либо планета Солнечной системы, и тогда задача Фату представляет собой задачу о движении малого спутника в поле притяжения планеты. Сюда же относится, разумеется, и задача о движении искусственного спутника в гравитационном поле Земли (или Луны).  [c.305]

Первые теоретические работы по исследованию возмущений от светового давления на движение искусственных спутников принадлежат П. Мюзену [9], Паркинсону, Джонсу, Шапиро 110]. Они были связаны с изучением движения спутника Авангард-1 . Оказалось, что теория движения этого спутника, учитывающая гравитационные возмущения (гравитационное поле Земли, притяжение Луны и Солнца), не давала должного согласия с наблюдениями. В этих работах были определены в первом приближении важнейшие возмущения. При этом пренебре-галось эффектом тени и предполагалось, что поверхность спутника зеркально отражает солнечные лучи.  [c.306]

Радиолокатор радар) представляет собой комбинацию ультракоротковолнового (таблица IV.4.1) радиопередатчика и радиоприемника, имеющих общую приемно-передаю-щую антенну, которая создает остронаправленное излучение радиолуч). Излучение осуществляется короткими импульсами с продолжительностью приблизительно 10 с. В промежутки времени между двумя последовательными импульсами излучения антенна автоматически переключается на прием сигнала, отраженного от цели. Расстояние до цели, ее местонахождение, определяется по промежутку времени между отправлением сигнала и приемом отраженного сигнала. Радиолокация наиболее эф4)ективна в случае с1 к, где с1 — линейные размеры лоцируемых тел. Поэтому в радиолокации применяются ультракороткие радиоволны дециметрового, сантиметрового и миллиметрового диапазонов (таблица IV.4.1). В радиолокационной астрономии методы радиолокации используются для уточнения движения планет Солнечной системы и их спутников, искусственных спутников Земли, космических кораблей и т. д.  [c.341]

Пространственный механизм типа ВСС В (см. рис. 2.7, Э) успешно применяют для ориентации солнечных панелей в искусственных спутниках земли. Пространственный четырехзвен-ник применяют также в механизме петлителя швейных машин  [c.35]

В настоящее время появились два направления крупномасштабного использования принципа фотоэлектрического преобразования. Одно из них предусматривает использование искусственных спутников Земли, выведенных на геосиихронные орбиты и оборудованных солнечными панелями из фотоэлементов.  [c.35]

Одна американская фирма демонстрировала антенну для искусственного спутника Земли, сделанную из сплава нитинол. Свитая в плотный клубок, занимая очень мало места, антенна в космосе обретет нужную форму, как только ее нагреют солнечные лучи. Думают использовать этот же принцип для изготовления огромного космического радиотелескопа с диаметром антенны в одну милю. Конструкции радиотелескопа изготовят на Земле и затем свернут в клубок . В космосе солнце подогреет конструкции, они расправятся и примут первоначальную форму, данную им на Земле.  [c.29]

В некоторых случаях вращение КА можно использовать для улучшения условий работы полезной нагрузки [И]. Например, вращение спутника Тирос использовалось для обзора поверхности Земли при фотосъемках и наблюдений метеорологических явлений с помощью телевизионных камер. При вращении КА более равномерно освещается Солнцем, что создает лучшие условия для работы солнечных батарей и более умеренный и равномерный тепловой режим по всему аппарату. Последнее упрощает конструкцию системы регулирования теплового режима. Кроме того, вращение КА создает искусственную силу тяжести, так как удаленные от оси вращения части аппарата испытывают центробежное ускорение. Искусственная сила тяжести необходима прежде всего для пилотируемых космических кораблей (в основном обитаемых космических станций), а также полезна с точки зрения конвективного охлаждения, регулирования уровня жидкости в баках и преодоления других технических трудностей.  [c.35]

Развитие авиационной и ракетной техники выдвинуло ряд новых задач теории относительного движения и теории гироскопов. В наших современных курсах механики и сборниках задач по теоретической механике подавляющее большинство рекомендуемых примеров рассматривается в предположении, что Земля неподвижна и системы координат, связанные с Землей, можно считать инерциаль-ными. Полеты межконтинентальных баллистических ракет, полеты искусственных спутников, полеты к Луне, полеты к планетам солнечной системы требуют более широкого взгляда на явления механического движения. Гироскопические устройства на летательных аппаратах (гирогоризонт, гировертикант, гиростабилизированные платформы, автопилоты) находятся, как правило, в условиях, когда точки подвеса гироскопов совершают неинерциальные движения и механические задачи существенно усложняются.  [c.30]

Синхронизация движений планет и спутников. Явление синхронизации используется для ориентирования в пространстве искусственных спутников Земли. Само по себе явление синхронизации движений небесных тел было замечено сначала у планет и сиутников Солнечной системы в виде удивительных связей между периодами обращений и вращений планет и спутников. Объяснение этих связей оказалось очень непростым и в настоящее время не завершено. Обнаруженные закономерности состоят в наличии простых целочисленных соотношений между частотами орбитальных и собственных вращений планет и спутников Солнечной системы вида [79, 256]  [c.52]

Развитие авиационной и ракетной техники выдвинуло ряд новых задач теории относительного движения и теории гироскопов. В наших современных курсах механики и сборниках задач по теоретической механике подавляющее большинство рекомендуемых примеров рассматривается в предположении, что Земля неподвижна и системы координат, связанные с Землей, можно считать инерциальными. Полеты межконтинентальных баллистических ракет, полеты искусственных спутников, полеты к Луне., полеты к планетам солнечной системы требуют более широкого взгляда на явления механического движения. Гироско-лические устройства на летательных аппаратах (гирогоризонт, гировер-  [c.11]

Бурный рост ракетных исследований космического пространства, успешные запуски космических аппаратов к Луне и некоторым внутренним планетам солнечной системы, полеты наших советских героев-кос-монавтов по орбитам искусственных спутников Земли привели к возникновению и необычайно интенсивному изучению новых задач механики, которые составляют предмет широкой научной дисциплины. Эту дис-  [c.18]

В динамике космического полета можно отчетливо проследить плодотворные взаимодействия техники и ряда фундаментальных и прикладных наук. Особенно следует подчеркнуть широкое использование методов и результатов небесной механики для решения задач динамики в гравитационных полях Солнца и планет солнечной системы. Так теория кеплеровых движений, теория возмущений орбит, исследование движений в оскулирующих элементах (метод Лагранжа) перешли из небесной механики в динамику космического полета с относительно небольшими изменениями и дополнениями. Но в ряде задач (например, теория движения искусственных спутников Земли) динамики космического полета пришлось создавать и разрабатывать совершенно новые методы исследования. Эти новшества вызываются дополнительными силами, которые в задачах небесной механики не играют существенной роли. Так, при движении спутников Земли на высотах до 500—700 км аэродинамические силы, обусловленные наличием атмосферы, оказывают влияние на законы движения и приводят к постепенному изменению (эволюции) орбит спутников. Изучение этих эволюций требует знания строения атмосферы на больших высотах и знания, законов аэродинамического сопротивления при полете с первой космической скоростью в весьма разреженной среде. Развитие космонавтики обусловило быстрый прогресс и аэродинамики и метеорологии.  [c.19]


Теория систем гравитационной стабилизации искусственных спутников разработана применительно к Земле как к притягивающему центру. Однако все основные результаты (условия устойчивости, эксцентриситетные колебания, длительность переходного процесса, выраженная в числе обращений спутника по орбите и пр.) сохраняются и для Луны и планет Солнечной системы. Отличие возникает лишь при оценке влияния возмущающих моментов и учете специфических для конкретной планеты условий (например, практическое отсутствие магнитного поля у Луны).  [c.300]

Концентрация частиц вблизи Земли составляет неск. десятков электронов в 1 с. , т. е. Земля находится как бы в С. к. В отдельных возмущенных областях этого потока плотности могут возрастать иногда J 10 раз. Теория солнечного ветра хорошо согласуется с измереггиями, выполненными на искусствен-1н,[х спутниках Земли. Т. обр., (j. к. теряет все свое вещество за неск. месяцев. Поиолнение коронального вещества происходит из хромосферы.  [c.572]

Изучение движения искусственных спутников Земли представляет интерес не только для специалистов по астродинамике, занимающихся прогнозированием движения ИСЗ и проектированием их орбит. Проблема эта ныне интересует широкий круг ученых, и прежде всего астрономов, геофизиков и геодезистов. Определение постоянных гравитационного поля Земли и параметров земной атмосферы, изучение лунно-солнечных приливов и движения полюса — вот неполный перечень задач, которые уже сейчас успешно решаются с помощью наблюдений ИСЗ. Можно думать, что в будущем появятся и другие не менее итересные и важные задачи, решение которых будет тесно связано с использованием наблюдений искусственных спутников.  [c.7]


Смотреть страницы где упоминается термин Спутник искусственный Земли солнечный : [c.436]    [c.598]    [c.364]    [c.204]    [c.137]    [c.12]    [c.40]    [c.585]    [c.586]    [c.271]    [c.351]   
Механика космического полета в элементарном изложении (1980) -- [ c.158 ]



ПОИСК



1-го солнечные спутников

Газ искусственный

Земли

Спутник

Спутник искусственный

Спутники Земли искусственные



© 2025 Mash-xxl.info Реклама на сайте