Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразование Пуассона и Гамильтона

Преобразование Пуассона и Гамильтона. Пуассону принадлежит идея принять за переменные величины  [c.467]

Преобразование Пуассона и Гамильтона. В конце первого тома, в п. 291 и в следующих, мы видели, как можно преобразовать уравнения движения точки, взятые в форме Лагранжа, к форме, названной канонической.  [c.364]

Прямая нулевого момента 30 Пуассона и Гамильтона преобразование 466  [c.514]

Пуассона и Гамильтона преобразование 364  [c.486]


Преобразование, начатое Пуассоном и законченное Гамильтоном, позволяет написать уравнение в форме, которая содержит частные производные только от одной функции и которая очень удобна для теоретических исследований.  [c.466]

Углубленный курс классической механики долгое время считался обязательной частью учебных планов по физике. Однако в настоящее время целесообразность такого курса может показаться сомнительной, так как студентам старших курсов или аспирантам он не дает новых физических понятий, не вводит их непосредственно в современные физические исследования и не оказывает им заметной помощи при решении тех практических задач механики, с которыми им приходится встречаться в лабораторной практике. Но, несмотря на это, классическая механика все же остается неотъемлемой частью физического образования. При подготовке студентов, изучающих современную физику, она играет двоякую роль. Во-первых, в углубленном изложении она может быть использована при переходе к различным областям современной физики. Примером могут служить переменные действие— угол, нужные при построении старой квантовой механики, а также уравнение Гамильтона — Якоби и принцип наименьшего действия, обеспечивающие переход к волновой механике, или скобки Пуассона и канонические преобразования, которые весьма ценны при переходе к новейшей квантовой механике. Во-вторых, классическая механика позволяет студенту, не выходя за пределы понятий классической физики, изучить многие математические методы, необходимые в квантовой механике.  [c.7]

Современный учебник подчеркнуты те вопросы, которые наиболее важны для квантовой механики. Используется векторный и матричный аппарат. Теория Гамильтона, скобки Пуассона и касательные преобразования. Введение в специальную теорию относительности.  [c.439]

Канонические преобразования, скобки Пуассона и Лагранжа, уравнение Гамильтона — Якоби, эйконал.  [c.441]

Эти последние соображения возвращают нас к рассуждениям, проведенным в гл. V, где рассматривалась связь между симметрией и интегралами движения. Введение аргументации, основанной на свойствах скобок Пуассона, позволило расширить область применения этих соображений и включить в нее все интегралы движения, а не только интегралы количества движения, как это имело место ранее. Теперь показано, что функция Гамильтона является инвариантом (а следовательно, система симметрична) относительно любого бесконечно малого преобразования, порожденного некоторым интегралом движения. Обратное утверждение также верно, и оно дает возможность находить интегралы движения при внимательном рассмотрении любой симметрии, которая обнаруживается в функции Гамильтона.  [c.116]


Можно дать новое, весьма изящное доказательство теоремы Пуассона ( 22.3). Возьмем в качестве функции ф известный интеграл исходной системы Гамильтона, при этом семейство траекторий в фазовом пространстве преобразуется само в себя, т. е. каждая траектория преобразуется в другую, близкую траекторию системы. Если а з (д р t) есть другой интеграл уравнений Гамильтона, то приращение его при контактном преобразовании (т. е. разность г]) Q Р i) — г (д р t)) будет равно (г з, ф) эта последняя величина остается постоянной, поскольку преобразованная траектория является одновременно траекторией исходной системы. Таким образом, (г ), ф) является функцией от (д р г), которая сохраняет постоянное значение вдоль траекторий гамильтоновой системы, иными словами, если ф и г з — известные интегралы уравнений Гамильтона, то (t 5, ф) также будет интегралом этих уравнений, и теорема Пуассона, таким образом, доказана.  [c.518]

Но согласно (25.7.14) функция Н тождественно равна нулю, откуда и следует теорема. Функции Р от (д р () образуют п новых интегралов исходных уравнений Гамильтона. Эти интегралы находятся в инволюции (в силу условий для скобок Пуассона, выполняющихся при контактных преобразованиях, см. 24.9).  [c.520]

Как известно, скобки Пуассона инвариантны относительно преобразования канонических переменных qi и Pi, которое оставляет неизменным вид уравнений Гамильтона. Лля скобок Пуассона имеем следующие свойства  [c.466]

Первое уравнение системы (4.13) совпадает с уравнением (4.11) и является непосредственным следствием преобразования Лежандра (оно фактически было получено Пуассоном). Второе уравнение (4.13) получается из уравнения Лагранжа (4.7) после замены дЬ/дх на импульс у и использования соотношения (4.12). Если воспользоваться соотношением (4.11) и преобразованием Лежандра Н Ь, то уравнения Гамильтона (4.13) перейдут в уравнение Лагранжа.  [c.47]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]


В этой главе прежде исего будет рассказано о том, как можно описать движение механической систел1ы с 5 стеиенями свободы в 25-мерном фазовом пространстве. Канонические уравнения выводятся из уравнений Лагранжа, Канонические преобразования обсуждаются весь 1а кратко, более подробно рассматриваются свойства скобок Пуассона, их инвариантность относительно канонических преобразований, их значение для отыскания интегралов движения и связь с бесконечно малыми контактными преобразованиями. Бегло рассмотрен случай движения заряженной частицы Б электромагнитном поле. В последнем параграфе принцип наименьшего действия выводится из вариационного принципа Гамильтона и обсуждается вопрос о том, как молено рассматривать время на равных правах со всеми остальными координатами q .  [c.123]

В этой исключительно ясно и просто написанной работе дается законченное изложение всех вопросов, связанных с задачами канонических преобразований и с задачей интегрирования уравнений Гамильтона методом отыскания полного интеграла. Обпще положения развиваемой им теории Донкин прилагав к установлению уравнений теории возмущенного движения. В своем изложении предмета Донкин широко пользуется функциональными определителями и скобками Пуассона, устанавливая для них новые соотношения и формулируя получаемые теоремы с помощью этих скобок.  [c.26]


Смотреть страницы где упоминается термин Преобразование Пуассона и Гамильтона : [c.5]    [c.367]    [c.8]    [c.487]    [c.498]   
Смотреть главы в:

Теоретическая механика Том 1  -> Преобразование Пуассона и Гамильтона

Теоретическая механика Том 2  -> Преобразование Пуассона и Гамильтона


Теоретическая механика Том 1 (1960) -- [ c.466 ]

Теоретическая механика Том 2 (1960) -- [ c.364 ]



ПОИСК



Гамильтон

Зэк гамильтоново

Преобразование Гамильтона

Преобразование Лежандра. Гамильтониан. Канонические уравнения. Функционал уравнений Гамильтона. Скобки Пуассона. Теорема Пуассона. Расширенное фазовое пространство. Интегрируемость гамильтоновых систем. Фазовый поТеоремаЛиувилля Канонические преобразования

Преобразование Пуассона

Пуассон



© 2025 Mash-xxl.info Реклама на сайте