Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расширения период

Расширение периода решетки по оси с на 0,0023 (10 нейтр./сл 2), по оси а на 0,0019  [c.108]

Отмеченные небольшие изменения скоростей, находящиеся на пределе точности эксперимента, следует связывать скорее с обеднением высоких частот в спектре распространяющейся волны, чем с дисперсией. Этим же обеднением высоких частот (и в связи с этим расширением периода колебаний с расстоянием) надо объяснить и последний случай различия скоростей Vq/v = 1,05.  [c.188]


В конструкции подшипников из алюминиевых сплавов надо учитывать их высокий коэффициент линейного расширения. При нагреве зазор в подшипнике возрастает, поэтому холодный зазор делают минимальным, совместимым с условием надежной работы подшипника в пусковые периоды. Кроме того, при нагреве возрастает натяг на посадочной повер.х-ности подшипника. Подшипники из алюминиевых сплавов применяют предпочтительно в корпусах из тех же сплавов.  [c.381]

Интересно отметить, что когда после окончания экспериментов давление в этом отрезке понижалось до атмосферного, то объем пузырька был мал по сравнению с исходным - воздух растворился под давлением в деаэрированной воде. Этот малозначительный на первый взгляд факт приобретает особое значение в связи с условиями правильной организации эксперимента. Если измерительный стенд содержит упругий объем (например, неисчезающий газовый пузырек), то его сжатие и расширение могут вызвать колебательное изменение расхода охладителя через образец и, как следствие - незатухающие колебания в системе. Так и было в первоначальных экспериментах, когда не удавалось добиться стабильной работы и наблюдались периодические пульсации давления перед образцом и температур во всех его точках с периодом 140-200 с (см. рис. 6.18). Такой режим является проявлением колебательной неустойчивости объединенной системы образец - гидравлический стенд, при котором происходит периодическое быстрое перемещение зоны испарения то на внешнюю (прорыв жидкости, резкое снижение кривых изображено на рис. 6.18), то на внутреннюю поверхность стенки (закипание до входа в нее, пик кривых).  [c.151]

Видим, что при необходимости диапазон регулировки периода колебаний маятника (а следовательно, точности хода часов) может быть расширен посредством уменьшения центрального радиуса инерции р маятника. О  [c.460]

Таблица Менделеева содержит смесь горизонтальных рядов, т.е. семь периодов и восемь вертикальных рядов, названных группами. К периодически изменяющимся свойствам, которые определяются внешними электронными оболочками, относятся наряду с химическими свойствами также атомный объем, напряжение ионизации, температура плавления, коэффициент расширения, строение оптических спектров и др. Элементы, расположенные в одном вертикальном столбце, обладают близкими свойствами при перемещении в направлении горизонтального ряда свойства элементов постоянно изменяются, но характер их изменения повторяется в следующем периоде. С каждым периодом в электронной оболочке атома начинается новое главное квантовое число, которое равно номеру периода. Это иллюстрирует схема для подуровней первых четырех электронных оболочек (рисунок 3.28). Первая оболочка относится к самому легкому элементу водороду, с порядковым номером 1, т.е, он имеет 1 электрон на внешней оболочке. Следующий элемент в этом ряду гелий имеет 2 электрона на той же первой оболочке. Литий имеет 3 электрона 2 электрона на Is подуровне и 1 электрон на 2s подуровне. Таблица Менделеева содержит смесь горизонтальных рядов, т.е. семь периодов и восемь вертикальных рядов, названных группами. К периодически изменяющимся свойствам, которые определяются <a href="/info/188633">внешними электронными</a> оболочками, относятся наряду с химическими свойствами также атомный объем, <a href="/info/228098">напряжение ионизации</a>, <a href="/info/32063">температура плавления</a>, <a href="/info/108198">коэффициент расширения</a>, строение <a href="/info/347503">оптических спектров</a> и др. Элементы, расположенные в одном вертикальном столбце, обладают близкими свойствами при перемещении в направлении горизонтального ряда <a href="/info/78159">свойства элементов</a> постоянно изменяются, но характер их изменения повторяется в следующем периоде. С каждым периодом в <a href="/info/13887">электронной оболочке</a> атома начинается новое <a href="/info/22717">главное квантовое число</a>, которое равно номеру периода. Это иллюстрирует схема для подуровней первых четырех <a href="/info/13887">электронных оболочек</a> (рисунок 3.28). Первая оболочка относится к самому легкому элементу водороду, с <a href="/info/536897">порядковым номером</a> 1, т.е, он имеет 1 электрон на <a href="/info/737885">внешней оболочке</a>. Следующий элемент в этом ряду гелий имеет 2 электрона на той же первой оболочке. Литий имеет 3 электрона 2 электрона на Is подуровне и 1 электрон на 2s подуровне.

Рабочее тело за один период двигателя проходит замкнутый круговой процесс (цикл), состоящий из изотермического расширения на участке I—2 (рис. 2.11), адиабатического расширения на участке 2—3, изотермического сжатия на участке 3—4 и адиабатического сжатия на участке 4—/ этот цикл называется циклом Карно. На участке 1—2 рабочее тело находится в тепловом контакте с источником теплоты высшей температуры Г . Следовательно, участок /—2 цикла представляет собой отрезок обрати.мой изотермы с температурой Тр, при этом рабочее тело получает от источника теплоту На участке 3—4 рабочее тело приводится в контакт с источником  [c.48]

Коэффициент теплового расширения (а — период решетки)  [c.227]

Как показано ранее (см. 6.1, 6.3), при быстром расширении сферической паровой полости давление в ней, а значит, и давление на границе пузыря со стороны жидкости заметно превосходит давление Роо вдали от межфазной границы. При кипении на горизонтальной твердой стенке расширение парового пузырька не обладает сферической симметрией, пузырек, особенно в начальный период роста, отталкивает жидкость от стенки. В результате жидкость как бы прижимает пузырь к обогреваемой поверхности. В целом прослеживается тенденция чем больше скорость роста пузырька, тем дольше он удерживается у стенки и тем больших размеров достигает перед отрывом.  [c.277]

Период расширения (кривая 3—4). Сжатые газы расширяются и, передвигая поршень из ВМТ в НМТ, совершают механическую работу (поршень делает рабочий ход). Вследствие быстроты протекания этот процесс также принимается идущим по адиабате (А = 0). Давление н температура отработавшей смеси понижаются, а объем увеличивается.  [c.71]

В Основных направлениях экономического и социального развития СССР на 1981 —1990 годы и на период до 2000 года большое внимание уделено улучшению использования научного потенциала высшей школы, существенному расширению объема проводимых научных исследований и разработок. В этой связи особое значение приобретает создание высококачественных учебников и учебных пособий для студентов вузов.  [c.3]

Теперь давление жидкости в трубе ро+Ар выше давления в резервуаре и жидкость начинает двигаться обратно в резервуар. Происходит упругое расширение массы жидкости в трубе. В течение времени о расширение сопровождается восстановлением в трубе начального давления ро- При этом фронт волны давления отступает в направлении запорного устройства, а скорость течения всей массы в трубе становится опять равной По, но теперь уже она направлена в сторону резервуара. Накопленная при торможении потока жидкости энергия упругого сжатия преобразуется опять в такой же запас кинетической энергии. Давление в жидкости становится равным начальному. Это значит, что масса жидкости в трубе обладает запасом внутренней энергии упругого сжатия (работа упругого сжатия от нуля до ра). Упругое расширение жидкости приводит к торможению потока, движущегося со скоростью По (равной начальной скорости течения в трубе) в сторону резервуара. Кинетическая энергия этого потока равна p Wvi 2. Из трубы обратно в резервуар может поступить только то же количество жидкости Аи , которое ранее поступило из резервуара в трубу. Работа упругих сил при торможении массы жидкости та же, что и при ее сжатии. Следовательно, в течение времени 1 = — [ с вся жидкость в трубе остановится и давление в ней станет ро—Давление в резервуаре теперь выше давления в трубе. Начнется поступление жидкости обратно в трубу со скоростью По с одновременным восстановлением давления ро. Когда фронт волны восстановления давления ро достигнет закрытого конца трубы, произойдет опять гидравлический удар. При измерении давления в жидкости непосредственно у закрытого конца трубы давление будет изменяться от Ро+Ар до ро—Ар. Период времени,  [c.366]

Рабочее тело за один период проходит замкнутый круговой процесс (цикл), состоящий из изотермического расширения, характеризующегося участком 1—2 (рис. 2.2), адиабатического расширения, соответствующего участку  [c.60]


Рабочее тело за один период двигателя проходит замкнутый круговой процесс (цикл), состоящий из изотермического расширения на участке 1—2, адиабатического расширения на участке 2—3, изотермического сжатия на участке 3—4 и адиабатического сжатия на участке  [c.61]

III период сгорания топлива, характеризуемый на диаграмме кривой 3—4, протекает при малом повышении давления подаваемое в цилиндр топливо сгорает по мере его поступления. По достижении заполняющей цилиндр средой состояния, отображаемого на диаграмме точкой 4, начинается ее расширение и продолжается некоторое догорание топлива.  [c.432]

Материалы вкладышей подшипников должны иметь 1. Достаточную износостойкость и высокую сопротивляемость заеданию в периоды отсутствия жидкостной смазки (пуск, торможение и др). Изнашиванию должны подвергаться вкладыши, а не цапфа вала, так как замена вала значительно дороже вкладыша. Подшипник скольжения работает тем надежнее, чем выше твердость цапфы вала. Цапфы, как правило, закаливают. 2. Высокую сопротивляемость хрупкому разрушению при действии ударных нагрузок и достаточное сопротивление усталости. 3. Низкий коэффициент трения и высокую теплопроводность с малым расширением.  [c.312]

В 1938 г. на пароходе Волга была установлена паровая машина тройного расширения мощностью 1565 и. л. с. при 92 об/мин отечественного производства. Это была комбинированная энергоустановка, состоявшая из паровой машины и турбины, действовавшей отработанным паром. Она позволила сократить удельный расход топлива на 20—25% и в тот период явилась серьезным техническим достижением советского машиностроения.  [c.290]

Если при реализации программы за 25—30 лет сопряженные капиталовложения в целом за период составляют 15—25% от прямых, то при сокращении срока реализации на 5—10 лет этот показатель увеличивается до 30—40%. Причем особенно быстро растет абсолютная и относительная величина сопряженных вложений в начале периода. В первом пятилетии они могут оказаться даже выше капиталовложений в основные энергетические объекты. Примерно треть сопряженных капиталовложений идет на расширение производства машин и оборудования, а также на строительство ремонтных заводов. Не менее половины капиталовложений приходится на долю производственной и социально-бытовой инфраструктуры и строительной базы.  [c.29]

Иными словами, главной функцией НТП в переходный период будет не столько удешевление энергии, сколько расширение энергетической базы общества, т. е. предотвращение сдерживания энергетикой темпов развития народного хозяйства. Поскольку же иных путей кардинального решения этой проблемы, по-видимому, не существует, актуальность основных направлений НТП в этот период становится безусловной. К ним относится прежде всего комплекс мероприятий по развитию ядерной энергетики — освоение реакторов на быстрых нейтронах, регенерация ядерного горючего и в последующем создание термоядерной энергетики. Важное направление научно-технического прогресса — демонтаж устаревшего оборудования и создание новых энергосберегающих технологий и оборудования, соответствующих изменившимся условиям развития энергетики.  [c.75]

В настоящее время общая потенциальная нефтегазоносность недр, т. е. предельная насыщенность осадочной толщи жидкими и газообразными углеводородами, определяется по геологическим критериям на основе обобщения информации, имеющейся к моменту оценки, и поэтому заметно изменяется во времени. При этом но принятой в СССР классификации потенциальные ресурсы с ун<е извлеченными включают разведанные запасы открытых месторождений (категорий Л + S -1- j Сз) и еще не разведанные (прогнозные) ресурсы нефти и газа (категории j + Д1 -f- Дг)- Значение последних в сырьевом обеспечении газодобычи возрастает по мере расширения рассматриваемого периода времени, и для периода более 10 лет они становятся основными.  [c.141]

Газовую термометрию Шаппюи можно считать истоком современной термометрии. Работа выполнялась в специально построенной лаборатории с превосходной термостабилизацией помещения, хотя в ней и отсутствовало многое из того, что сегодня считалось бы необходимым. Основная задача Шаппюи состояла в градуировке лучших ртутно-стеклянных термометров по абсолютной (т. е. термодинамической) температуре. Первая часть работы состояла в детальном изучении газового термометра постоянного объема, заполнявшегося водородом, азотом и углекислым газом в качестве рабочего тела. Результатом были отсчеты показаний набора ртутно-стеклянных термометров Тоннело, четыре из которых были типа а и четыре усовершенствованного типа б со шкалой, расширенной до —39 °С. На рис. 2.1 представлены результаты Шаппюи для трех газов, полученные в период 1885—1887 гг. [15]. Сочетание превосходной воспроизводимости термометров Тоннело и чрезвычайной тщательности работы с газовым термометром позволило получить погрешность менее одной сотой градуса почти во всем интервале — действительно выдающееся достижение.  [c.39]

Титан — металл серебристо-белого цвета, находится в IV группе Периодической системы (см. табл 1). Fro порядковый номер 22, атомная масса 47,9, температура плавления 1665 5 °С. Титан имеет две аллотропические модификации до 882 °С существует а-титан, который кристаллизуется в г. п. у. решетке с периодами а = = 0,29503 нм и с = 0,48631 нм (с/а — 1,5873), а при более высоких температурах — Р-титан, имеющий о. ц. к. решетку, период которой а — 0,33132 нм (при 900 °С). Плотность атитаиа составляет 4,505 г/см , Р-титана при 900 °С — 4,32 г/см Коэффициент линейного расширения титана в интервале 20—100 °С равен 8,3 10 теплопроводность при 50 °С составляет 15,4 Вт/(м К). Технический титан изготовляют трех марок ВТ1-00 (99,53 % Ti), ВТ1-0 (99,48 % Ti) и ВТЫ (99,44 % Ti).  [c.313]

Рабочая температура втулки может значительно превышать температуру корпуса, например, при резком повышении частоты вращения, когда теплота, развивающаяся во втулке от трения, не успевает перейти в корпус. Большая разность температур наблюдается в пусковые периоды, когда втулка быстро разогревается, а корпус еще остается холодным. Если втулка выполнена из материала с более высоким коэффициентом линейного расширения, чем у. материала корпуса, то втулка, предварительно напряженная запрессовко1(, может приобрести остаточные деформации при последующем остывапип посадка втулки ослабевает.  [c.396]


Уточненные расчеты в принципе должны проводться с > четом всех режимов и действующих нагрузок за период эксплуатации, включая температурные воздействия и взаимодействия с рабочей средой, изменения характеристик металла из-за старения. В зависимости от параметров технического состояния оборудования перечень характеристик должен быть расширен и должен включать кроме стандартных свойств характеристики малоцикловой и коррозионной усталости, трещиностойкости, механохимической коррозии и др.  [c.334]

Однако даже при весьма точных измерениях приведенной длины и периода маятника для получения точных окончательных результатов необходимо учесть влияние еще целого ряда факторов, которых ие учитывает формула (13.21). Прежде всего, эта формула, полученная в результате замены sin а па а, является приближенной. Для уменьшения ошибки измерения производятся при очень малых амплитудах колебаний маятника, и при этом вводится поправка, которая для малы.х амплитуд может быть рассчитана с большой точностью. Далее приходится учитывать поправки па температуру, так как с изменением температуры изменяются все размеры маятника (вследствие теплового расширения). Ошибки вносят также и силы трения, действующие иа маятник со стороны подвеса и окружающего воздуха, — онн несколько увеличивают период колебаний. Для устранения этих ошибок по возможности уменьшают трение в подвесе (подвешивают ь аятннк на агатовой призме) и вводят поправку на давление, учитывающую нзнененне влияния воздуха. Учет всех этих поправок позволяет достичь огромной точности в измерении силы тяжести. В наиболее точных измерениях ошибка не превьшшет 2- 10 от измеряемо величины.  [c.411]

Наибольшее развитие наука о сопротивлении материалов получила в XX в. как в Советском Союзе, так и за рубежом в связи с развитием авиации, крупнотоннажного флота, атомного энергостроения, ракетной и космической техники. В нашей стране наука о сопротивлении материалов стала бурно развиваться после Октябрьской революции, когда начались рост народного хозяйства, расширение сети высших технических учебных заведений, научно-исследовательских и проектных институтов. Важные исследования в этот период проведены А. Н. Крыловым (автор теории непотопляемости корабля), В. В. Власовым (автор теории расчета тонкостенных стержней), Б. Г. Галеркиным, К. С, Завриевым, Н.М. Беляевым, Б. Н. Жемочкиным, А. А. Уманским, С. Д. Пономаревым, Н. И. Безуховым и другими известными учеными. Из зарубежных исследователей следует отметить английского ученого А. Гриффит- са, автора фундаментальной теории развития трещины, которая имеет чрезвычайно важное значение на современном этапе разви-  [c.6]

В случае осцилляций, монотонного сжатия пли расширения газового пузырька без фазовых переходов (S, = О п qzi = — при конечных, по пе очень больших изменениях его радиуса, распределение температур около стенки пузырька (г = а) качественно показано на рис. 1.6.1, а. Сплошная кривая соответствует сжатию, а штриховая — расширению при осцилляциях кривая распределения температур колеблется от сплошной к штриховой с периодом осцилляций пузырька. При этом температура центральной части нузырька изменяется по закону, близкому к адиабатическому, в соответствип с изменением объема пузырька,  [c.114]

Как известно [75, 76], пластическая деформация материалов приводит к значительному увеличению плотности таких дефектов, как дислокации (или их скопления), дефекты упаковки, вакансии (или нх комплексы), междоузельные атомы и т.д. Поля искажений этих дефектов кристаллического строения вызывают смещения атомов из узлов, что приводит к упругим микродеформациям. Если размер блоков достаточно мал (-10" см), это приводит к заметному расширению дифракционных пиков на дифрактограммс. Наличие в поликристал-лическом образце микроискажений (т.е. присутствие кристаллов с вариацией периода решетки) также приводит к расширению пиков на дифрактограмме. В настояи ,ее время развит1)1 три метода (аппроксимации или интегральной ширины, гармонический анализ формы рентгеновских линий, метод моментов), основанные на анализе формы дифракционных линий, с помощью которых могут быть найдены размеры блоков и величина микродеформаций в случае их раздельного и совместного присутствия в исследуемом образце. Зачастую имеется однозначная связь между величиной микродеформаций и плотностью хаотически распределенных дислокаций.  [c.160]

Большое внимание уделялось в тот период разработке и практическому приложению более совершенных форм эксплуатации автомобильного парка. Именно тогда была отработана система планово-предупредительного технического обслуживания и ремонта автомобилей и введен агрегатный метод ремонта, принципиальные положения которых используются в современной эксплуатационной практике. Столь же большое внимание привлекало последовательное расширение научно-исследовательских работ. Уже упоминавшимися исследованиями Е. А. Чудакова, работами Н. Р. Брилинга, Л.К. Мартенса, И. М. Ленина, Б. С. Фалькевича, В. В. Ефремова, П. В. Каниовского, Г. В. Зимелева и других исследователей, получившими международное признание, закладывались основы теории и расчета автомобиля, определялись методы рациональной организации автотранспортного хозяйства и способы решения главнейших экономических проблем автомобильного транспорта. В 1939 г. был основан Центральный научно-исследовательский институт автомобильного транспорта (ЦНИИАТ), теперь—Государственный научно-исследовательский институт автомобильного транспорта (НИИАТ), специализированный на исследовании проблем эксплуатации и ремонта автомобилей. В начале 30-х годов в Москве (на базе автодорожного факультета Московского института инженеров транспорта и Высшей автодорожной школы), Харькове, Ленинграде, Саратове, Ростове-на-Дону и Омске были основаны учебные автомобильно-дорожные институты, на кафедрах которых также проводились научные исследования. Более чем в восьмидесяти техникумах велась подготовка среднего технического персонала автомобильно-дорожной специальности, а в широко разветвленной низовой сети специальных курсов и школ готовились кадры водителей автомобилей.  [c.261]

Дальнейшее совершенствование автомобильного парка предполагает последовательное расширение теоретических и экспериментальных исследований и выполнение ряда значительных конструкторских и технологических разработок. Результаты многих исследовательских работ и многие новые инженерные решения воплощены в конструкциях автомобилей, вновь осваиваемых в серийном и массовом производстве. Отраслевые научно-исследовательские институты, специализированные проектно-конструкторские организации и заводские лаборатории располагают квалифицированными кадрами исследователей и конструкторов и совершенным оборудованием. В 1966 г. в Дмитровском районе под Москвой закончено строительство первого в СССР и одного из крупнейших в мире автомобильного полигона с 14-километровой кольцевой цементобетонной дорогой для испытания автомобилей на скоростных режимах, с 18,5-километровой кольцевой грунтовой дорогой переменного профиля, включая труднопроходимые участки, со специальными испытательными дорогами для динамометрических исследований, определения взаимодействия движущихся автомобилей с различными дорожными покрытиями и т. д. Все это обеспечивает получение эффективных решений кардинальных проблем безопасности движения с большими скоростями, применения новых конструкционных материалов, нейтрализации выбрасываемых в атмосферу выхлопных газов и использования новых источников энергии, разработки легкосменных узлов, облегчающих техническое обслуживание и ремонт автомобилей, повышения экономичности автомобилей и других проблем, характерных для основных направлений развития автомобилестроения и автомобильного транспорта в ближайший период.  [c.274]


В 1955 г. грузооборот морского транспорта составил 68,9 млрд, ткм против 23,8 млрд, ткм в 1940 г. Грузооборот речного транспорта за тот же период возрос с 36,1 млрд, ткм до 67,7 млрд, ткм [22]. Такой быстрый темп роста грузооборота во многом определялся количественным увеличением состава транспортных судов. Для речного транспорта существенное значение имело при этом усиление строительства самоходных грузовых судов, с вводом которых в 2—2,5 раза повысилась скорость доставки грузов и улучшилось использование шлюзованных речных путей. Но дальнейшее расширение водных перевозок вредполагало не только численное пополнение судового фонда рациональное решение проблемы освоения нарастающих грузопотоков требовало его коренного качественного улучшения.  [c.296]

Унаследовав от дореволюционной России маломощную авиационную промышленность, несамостоятельную в техническом и финансовом отношениях. Советское государство с первых же месяцев своего существования в числе многих других неотложных дел постоянно уделяло и уделяет неослабное внимание проблемам совершенствования и расширения самолетостроительных производств, обеспечения прогресса авиатехники и эффективной эксплуатации самолетного парка. Еще на рубеже 20-х годов Коммунистическая партия и Советское правительство осуществили ряд крупных организационнотехнических мер, направленных на комплексное решение этих проблем, предусматривавших введение единой государственной системы разработки, испытания и доводки опытных образцов самолетов и авиационных двигателей, организацию научно-исследовательской базы и подготовку квалифицированных кадров авиаспециалистов, и последовательно проводимых во все периоды истории самолетостроения в СССР.  [c.400]

Расширение сферы использования электроэнергии в народном хозяйстве будет сопровождаться сдвигами в требуемых режимах работы ЕЭЭС, итоговый результат которых, вообще говоря, неоднозначен с учетом существенно разных режимов использования электроэнергии на электрифицируемых участках экономики. Например, повышение электрификации быта увеличивает пиковую нагрузку в ЕЭЭС, тогда как перевод на электротягу привода газопроводов — базисную нагрузку, а электротеплоснабжение в сельском хозяйстве часто играет роль потребителей-регуляторов, увеличивая потребление так называемой ночной электроэнергии. Анализ показывает, что равнодействующая этих противоположно действующих эффектов в рассматриваемой перспективе будет направлена в сторону уплотнения режимов электропотребления, причем сила ее проявления будет выше в 1-й фазе переходного периода. Так, в соответствии с предварительными оценками, каждый дополнительный киловатт мощности электростанций, необходимый для расширения сферы применения электроэнергии, в 1-й фазе должен будет использоваться 7800-8200, а во 2-й — 7400—7500 ч/год.  [c.91]

При решении вопросов реконструкции ТСС в процессе разработки схем теплоснабнчения городов сопоставление вариантов развития систем на перспективу 10—15 лет должно производиться по одному из динамических критериев при разбивке исследуемого периода на несколько дискретных интервалов времени с соответствующими им уровнями нагрузок. Поскольку методы оптимизации структуры и параметров ТСС, реализованные в ППП СТРУКТУРА и СОСНА, позволяют решать задачи оптимальной реконструкции и расширения сложных многоконтурных ТСС на возросшие и вновь появляющиеся тепловые нагрузки с оптимальным учетом существующего состояния системы, они представляют хорошую базу для реализации алгоритмов учета динамики развития.  [c.135]

С априорным ранжированием (см. табл. 7.4). Причина этого очевидна. Программа Сжатый газ — карбюраторная линия развития двигателя — конкурирует с высокоэффективной и автономной программой Дизелизация автопарка . Однако последняя пе имеет окончательного преимущества, потому что программа нефть — нефть только сокращает определенные составляющие потребления нефтяных фракций (в лучшем случае вдвое). В конце рассматриваемого периода при резком росте удельных капиталовложений в добычу нефти программа дизелизации обнаружит свою недостаточность. В связи с этим продолжение карбюраторной линии развития двигателя внутреннего сгорания и расширение сферы применения сжатого газа оказываются эффективными. Однако конкуренция программ Сжатый газ и Дизелизация автопарка во внутреннем потреблении снижает индивидуальную эффективность каждой из них по сравнению с бесконкурентной в экспорте программой Метанол . Ограничение объема внедрения одной из двух конкурирующих программ не столь убыточно, пока не исчерпаны возможности другой. Варианты с ограничением применения сжатого газа имеют значение еще и как страховочные, поскольку программа Сн атый газ предполагает использование в широких масштабах импортного компрессорного оборудования.  [c.167]

Кузнецкий угольный бассейн на весь период должен рассматриваться как обш есоюзная база для развития добычи коксуюш ихся и высококачественных энергетических углей. Для обеспечения увеличения объемов добычи угля и ускорения НТП в Кузбассе необходимо выполнение мероприятий по поддержанию действующих мощностей угольных шахт и разрезов с одновременной интенсивной закладкой новых предприятий расширение добычи угля гидравлическим способом, в том числе на месторождениях с мощными крутыми пластами, а также с закладкой выработанного пространства перевод открытой добычи угля на циклично-поточную и поточную технологии развитие работ но подземной газификации угля, углехимии и комплексной переработке угля, добыче и переработке сапро-пелитов.  [c.218]

Для внешних связей углеснабжающих систем развитых капиталистических стран в рассматриваемый период будет характерно значительное расширение экспортно-импортных операций, что обусловлено возрастанием роли угля в энергетическом балансе, в том числе как сырья для производства искусственного жидкого топлива. Конъюнктура международной капита-  [c.137]


Смотреть страницы где упоминается термин Расширения период : [c.89]    [c.89]    [c.99]    [c.87]    [c.308]    [c.281]    [c.6]    [c.11]    [c.330]    [c.409]    [c.240]    [c.324]    [c.45]    [c.473]   
Техническая энциклопедия Т 10 (1931) -- [ c.187 ]

Техническая энциклопедия Том 6 (1938) -- [ c.187 ]



ПОИСК



Период



© 2025 Mash-xxl.info Реклама на сайте